DNA Tile Self-Assembly Guided by Base Excision Repair Enzymes.

Angew Chem Int Ed Engl

Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy.

Published: August 2022

We demonstrate here the use of DNA repair enzymes to control the assembly of DNA-based structures. To do so, we employed uracil-DNA glycosylase (UDG) and formamidopyrimidine DNA glycosylase (Fpg), two enzymes involved in the base excision repair (BER) pathway. We designed two responsive nucleic acid modules containing mutated bases (deoxyuridine or 8-oxo-7,8-dihydroguanine recognized by UDG and Fpg, respectively) that, upon the enzyme repair activity, release a nucleic acid strand that induces the self-assembly of DNA tiles into tubular structures. The approach is programmable, specific and orthogonal and the two responsive modules can be used in the same solution without crosstalk. This allows to assemble structures formed by two different tiles in which the tile distribution can be accurately predicted as a function of the relative activity of each enzyme. Finally, we show that BER-enzyme inhibitors can also be used to control DNA-tile assembly in a specific and concentration-dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202208367DOI Listing

Publication Analysis

Top Keywords

base excision
8
excision repair
8
repair enzymes
8
nucleic acid
8
dna
4
dna tile
4
tile self-assembly
4
self-assembly guided
4
guided base
4
repair
4

Similar Publications

Pyrrolizidine alkaloids (PAs) are common phytotoxins that are found worldwide. Upon hepatic metabolic activation, the reactive PA metabolites covalently bind to DNAs and form DNA adducts, causing mutagenicity and tumorigenicity in the liver. However, the molecular basis of the formation and removal of PA-derived DNA adducts remains largely unexplored.

View Article and Find Full Text PDF

The role of sonic hedgehog signaling in the oropharyngeal epithelium during jaw development.

Congenit Anom (Kyoto)

December 2024

Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.

Sonic hedgehog (Shh) is expressed in the oropharyngeal epithelium, including the frontonasal ectodermal zone (FEZ), which is defined as the boundary between Shh and Fgf8 expression domains in the frontonasal epithelium. To investigate the role of SHH signaling from the oropharyngeal epithelium, we generated mice in which Shh expression is specifically deleted in the oropharyngeal epithelium (Isl1-Cre; Shh). In the mutant mouse, Shh expression was excised in the oropharyngeal epithelium as well as FEZ and ventral forebrain, consistent with the expression pattern of Isl1.

View Article and Find Full Text PDF

Osseous choristomas, characterized by ectopic bone, are rare and typically found in the head and neck, particularly on the tongue. This report describes a unique case of an osseous choristoma in a 63-year-old male with an unusual posterior tongue location. An incidental base of tongue (BOT) mass was discovered during a bronchoscopy for lung biopsy.

View Article and Find Full Text PDF

Apurinic/apyrimidinic endonuclease 1 (APE1) is a central enzyme in the base excision repair (BER) pathway. APE1 catalyzes incision of the phosphodiester linkage on the 5'-side of apurinic/apyrimidinic (AP) sites during the repair of damaged nucleobases in cellular DNA. Inhibition of this enzyme can potentiate the action of DNA-damaging chemotherapeutic agents.

View Article and Find Full Text PDF

8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!