infections pose a potential threat to livestock production and public health. A novel strategy is needed to control infections due to its adaptive evolution to antibiotics. Autophagy plays a key role in degrading bacteria for innate immune cells. In order to promote clearance via Toll-like receptor (TLR)-induced autophagy pathway, the domain fusion TLR2-4 with the extracellular domain of TLR2, specific recognizing , and transmembrane and intracellular domains of TLR4 is assembled, then the goat expressing is generated. TLR2-4 substantially augments the removal of within macrophages by elevating autophagy level. Phosphorylated JNK and ERK1/2 promote LC3-puncta in TLR2-4 macrophages during -induced autophagy via MyD88 mediated the TAK1 signaling cascade. Meantime, the TRIF-dependent TBK1-TFEB-OPTN signaling is involved in TLR2-4-triggered autophagy after challenge. Moreover, the transcript of and is significantly increased via cAMP-PKA-NF-κB signaling, which facilitates -induced autophagy in TLR2-4 macrophages. Overall, the novel receptor TLR2-4 enhances the autophagy-dependent clearance of in macrophages via TAK1/TBK1-JNK/ERK, TBK1-TFEB-OPTN, and cAMP-PKA-NF-κB-ATGs signaling pathways, which provide an alternative approach for resistant against infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239677PMC
http://dx.doi.org/10.7554/eLife.78044DOI Listing

Publication Analysis

Top Keywords

domain fusion
8
fusion tlr2-4
8
tlr2-4 enhances
8
enhances autophagy-dependent
8
autophagy-dependent clearance
8
tlr2-4 macrophages
8
-induced autophagy
8
tlr2-4
6
autophagy
6
clearance genetic
4

Similar Publications

Development of a Recombinant Fusion Vaccine Candidate Against Lethal Neurotoxin Types A and B.

Vaccines (Basel)

January 2025

Division of High-Risk Pathogens, Department of Laboratory Diagnosis and Analysis, Korea Disease Control and Prevention Agency, KDCA, Cheongju 28159, Republic of Korea.

Background: Botulinum neurotoxins (BoNTs), produced by , are potent protein toxins that can cause botulism, which leads to death or neuroparalysis in humans by targeting the nervous system. BoNTs comprise three functional domains: a light-chain enzymatic domain (LC), a heavy-chain translocation domain (HC), and a heavy-chain receptor-binding domain (HC). The HC domain is critical for binding to neuronal cell membrane receptors and facilitating BoNT internalization via endocytosis.

View Article and Find Full Text PDF

Background: Noroviruses, which cause epidemic acute gastroenteritis, and parasites, which lead to malaria, are two infectious pathogens that pose threats to public health. The protruding (P) domain of norovirus VP1 and the αTSR domain of the circumsporozoite protein (CSP) of sporozoite are the glycan receptor-binding domains of the two pathogens for host cell attachment, making them excellent targets for vaccine development. Modified norovirus P domains self-assemble into a 24-meric octahedral P nanoparticle (P NP).

View Article and Find Full Text PDF

Multi-Strategy Improved Red-Tailed Hawk Algorithm for Real-Environment Unmanned Aerial Vehicle Path Planning.

Biomimetics (Basel)

January 2025

Laboratory for Robot Mobility Localization and Scene Deep Learning Technology, Guizhou Equipment Manufacturing Polytechnic, Guiyang 550025, China.

In recent years, unmanned aerial vehicle (UAV) technology has advanced significantly, enabling its widespread use in critical applications such as surveillance, search and rescue, and environmental monitoring. However, planning reliable, safe, and economical paths for UAVs in real-world environments remains a significant challenge. In this paper, we propose a multi-strategy improved red-tailed hawk (IRTH) algorithm for UAV path planning in real environments.

View Article and Find Full Text PDF

This study designs and develops a wearable exoskeleton piano assistance system for individuals recovering from neurological injuries, aiming to help users regain the ability to perform complex tasks such as playing the piano. While soft robotic exoskeletons have proven effective in rehabilitation therapy and daily activity assistance, challenges remain in performing highly dexterous tasks due to structural complexity and insufficient motion accuracy. To address these issues, we developed a modular division method based on multi-domain mapping and a top-down process model.

View Article and Find Full Text PDF

Probing the properties of PTEN specific botulinum toxin type E mutants.

J Neural Transm (Vienna)

January 2025

Institut für Zellbiochemie, OE 4310, Medizinische Hochschule Hannover, 30623, Hannover, Germany.

Botulinum neurotoxins (BoNT) are established biopharmaceuticals for neuromuscular and secretory conditions based on their ability to block neurotransmitter release from neurons by proteolyzing specific soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Recently, a mutant catalytic domain of serotype E (LC/E) exhibiting 16 mutations was reported to cleave the phosphatase and tensin homolog (PTEN). This molecule represents an attractive new target in neurons as several reports support PTEN knockdown as a strategy to stimulate axonal regeneration after injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!