Recent studies revealed that molecular events related with the physiology and pathology of αS might be regulated by specific sequence motifs in the primary sequence of αS. The importance of individual residues in these motifs remains an important open avenue of investigation. In this work, we have addressed the structural details related to the amyloid fibril assembly and lipid-binding features of αS through the design of site-directed mutants at position 39 of the protein and their study by in vitro and in vivo assays. We demonstrated that aromaticity at position 39 of αS primary sequence influences strongly the aggregation properties and the membrane-bound conformations of the protein, molecular features that might have important repercussions for the function and dysfunction of αS. Considering that aggregation and membrane damage is an important driver of cellular toxicity in amyloid diseases, future work is needed to link our findings with studies based on toxicity and neuronal cell death. BRIEF STATEMENT OUTLINING SIGNIFICANCE: Modulation by distinct sequential motifs and specific residues of αS on its physiological and pathological states is an active area of research. Here, we demonstrated that aromaticity at position 39 of αS modulates the membrane-bound conformations of the protein, whereas removal of aromatic functionality at position 39 reduces strongly the amyloid assembly in vitro and in vivo. Our study provides new evidence for the modulation of molecular events related with the physiology and pathology of αS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235065PMC
http://dx.doi.org/10.1002/pro.4360DOI Listing

Publication Analysis

Top Keywords

aromaticity position
12
membrane-bound conformations
12
amyloid fibril
8
fibril assembly
8
molecular events
8
events physiology
8
physiology pathology
8
αs
8
pathology αs
8
primary sequence
8

Similar Publications

N-heterocyclic carbene (NHC)-protected gold nanoclusters display high stability and high photoluminescence, making them well-suited for fluorescence imaging and photodynamic therapeutic applications. We report herein the synthesis of two bisNHC-protected Au nanoclusters with π-extended aromatic systems. Depending on the position of the π-extended aromatic system, changes to the structure of the ligand shell in the cluster are observed, with the ability to correlate increases in rigidity with increases in fluorescence quantum yield.

View Article and Find Full Text PDF

High-throughput screening of protein interactions with per- and polyfluoroalkyl substances (PFAS) used in photolithography.

J Hazard Mater

January 2025

Department of Civil & Environmental Engineering, University of Pittsburgh, 3700 O'Hara St., Pittsburgh, PA 15261, USA; Department of Environmental and Occupational Health, University of Pittsburgh, 3700 O'Hara St., Pittsburgh, PA 15261, USA. Electronic address:

Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used extensively across industries, including semiconductor manufacturing. Semiconductors are ubiquitous, and there is increasing global demand for semiconductors, e.g.

View Article and Find Full Text PDF

In this work, we show two synthetic routes to substitute the N position of mesoionic imines (MIIs). By Buchwald-Hartwig amination, 5-amino-1,2,3-triazoles can be arylated at the said position, showing the versatility of amino-triazoles as building blocks for MIIs. The reaction of MIIs with electrophiles (MeI, fluoro-arenes) highlights the nucleophilic nature of MIIs as even at room temperature aromatic C-F bonds can be activated with MIIs.

View Article and Find Full Text PDF

Increased industrial offshore activities in northern waters raise the question of impact of polycyclic aromatic hydrocarbons (PAHs) on key Arctic marine species. One of these is the ecologically important polar cod (Boreogadus saida), which is the primary food source for Arctic marine mammals and seabirds. In the present work, we have conducted the first comprehensive proteomics study with this species by exploring the effects of dietary PAH exposure on the hepatic proteome, using benzo[a]pyrene (BaP) as a PAH model-compound.

View Article and Find Full Text PDF

Cascade Aza-Prins/Friedel-Crafts Reaction of Homocinnamyloxycarbamate and Aromatic Aldehydes Yielding Aromatic Ring-Annulated Hydrocyclopenta-1,2-oxazinane.

J Org Chem

January 2025

Applied Chemistry and Chemical Engineering, Graduate School of Engineering, Kogakuin University, Nakano 2665-1, Hachioji, Tokyo 192-0015, Japan.

The cascade aza-Prins/Friedel-Crafts reaction of homocinnamyloxycarbamate with electron-rich aromatic aldehydes has been successfully established. Most of the aromatic aldehydes react with the carbamate stereoselectively to generate -hydroindeno-1,2-oxazinanes. However, the cascade reactions of benzaldehydes bearing two methoxy groups at the -positions exhibit a unique stereochemical profile.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!