Mutations in the RNA helicase, , are a leading cause of Intellectual Disability and present as syndrome, a neurodevelopmental disorder associated with cortical malformations and autism. Yet, the cellular and molecular mechanisms by which DDX3X controls cortical development are largely unknown. Here, using a mouse model of loss-of-function we demonstrate that DDX3X directs translational and cell cycle control of neural progenitors, which underlies precise corticogenesis. First, we show brain development is sensitive to dosage; complete loss from neural progenitors causes microcephaly in females, whereas hemizygous males and heterozygous females show reduced neurogenesis without marked microcephaly. In addition, loss is sexually dimorphic, as its paralog, , compensates for in the developing male neocortex. Using live imaging of progenitors, we show that DDX3X promotes neuronal generation by regulating both cell cycle duration and neurogenic divisions. Finally, we use ribosome profiling to discover the repertoire of translated transcripts in neural progenitors, including those which are DDX3X-dependent and essential for neurogenesis. Our study reveals invaluable new insights into the etiology of syndrome, implicating dysregulated progenitor cell cycle dynamics and translation as pathogenic mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9239684PMC
http://dx.doi.org/10.7554/eLife.78203DOI Listing

Publication Analysis

Top Keywords

cell cycle
16
neural progenitors
12
cortical development
8
aberrant cortical
4
development driven
4
driven impaired
4
cell
4
impaired cell
4
cycle
4
cycle translational
4

Similar Publications

This study aimed to determine the effects of novel N-{3-[(pyridin-4-yl)carbamoyl] phenyl} thiophene-2-carboxamide or PCPTC chemical moiety loaded Poly(lactic-co-glycolic acid)-Poly (Ethylene glycol) or (PLGA-PEGylated) NP as an anti-metastatic Ran GTPase therapeutic agent on MDA-MB231 triple-negative human breast cancer cells. Molecular docking and MD simulation was done to determine the binding potential of novel carboxamide PCPTC with Ran GTPase. PLGA and PLGA-PEG based NP encapsulating PCPTC were fabricated using the Modified Double Emulsion Solvent Evaporation Technique and characterized for size, zeta potential, polydispersity and morphology.

View Article and Find Full Text PDF

Role of arbutin in the inhibition of FBXO5 in hepatocellular carcinoma.

Discov Oncol

December 2024

Department of Hygiene, School of Public Health, Bengbu Medical University, Bengbu, 233030, Anhui, People's Republic of China.

Purpose: This work investigated the effect of FBXO5 in hepatocellular carcinoma (HCC) and the mechanism of action of arbutin in its inhibition.

Methods: FBXO5 mRNA and protein expressions in the tumor were assessed using TCGA, ICGC and HPA databases. Cox regression analysis and Kaplan-Meier survival curves were employed to assess the impact of FBXO5 on the survival outcomes of patients with HCC.

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy caused by disorders in stem cell differentiation and excessive proliferation resulting in clonal expansion of dysfunctional cells called myeloid blasts. The combination of chemotherapeutic agents with natural product-based molecules is promising in the treatment of AML. In this study, we aim to investigate the anti-cancer effect of Rapamycin and Niacin combination on THP-1 and NB4 AML cell lines.

View Article and Find Full Text PDF

Genome-Wide Network Analysis of DRG-Sciatic Nerve Network-Inferred Cellular Senescence and Senescence Phenotype in Peripheral Sensory Neurons.

Mol Neurobiol

December 2024

Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, 820 San-Nomiya, Koshigaya-Shi, Saitama, 343-8540, Japan.

Accumulation of senescent neurons in the dorsal root ganglion (DRG) is an important tissue phenotype that causes age-related degeneration of peripheral sensory nerves. Senescent neurons are neurons with arrested cell cycle that have undergone cellular senescence but remain in the tissue and play various biological roles. To understand the accumulation of senescent neurons in the DRG during aging, we aimed to elucidate the mechanism that induces cellular senescence in DRG neurons and the role of senescent DRG neurons.

View Article and Find Full Text PDF

Bisindole alkaloids constitute a significant class of natural compounds distinguished by their characteristic bisindole structure and renowned for their anticancer properties. Over the past six decades, researchers have isolated 425 microorganism-derived bisindole alkaloids (MDBAs). Among them, 187 MDBAs have demonstrated anticancer properties against various in vitro cancer cell lines, primarily by impeding the cell cycle, restraining cell proliferation, and inducing apoptosis and autophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!