Stereodivergent Construction of 1,4-Nonadjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis.

Angew Chem Int Ed Engl

College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, 430072, China.

Published: September 2022

An unprecedented hydroalkylation of racemic allylic alcohols and racemic ketimine esters enabled by Cu/Ru relay catalysis has been developed via merging the ruthenium-catalyzed asymmetric borrowing-hydrogen reaction with a copper-catalyzed asymmetric Michael addition in a one-pot procedure. The current method enables the efficient preparation of highly functionalized δ-hydroxyesters bearing 1,4-nonadjacent stereocenters in good yields with high levels of diastereoselectivity and excellent enantioselectivity under mild reaction conditions. The full complement of the four stereoisomers of hydroalkylation products could be readily accessed by orthogonal permutations of two chiral metal catalysts. The current work highlights the power of relay catalysis for the stereodivergent construction of 1,4-nonadjacent stereocenters that were otherwise inaccessible.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202206517DOI Listing

Publication Analysis

Top Keywords

14-nonadjacent stereocenters
12
relay catalysis
12
stereodivergent construction
8
construction 14-nonadjacent
8
hydroalkylation racemic
8
racemic allylic
8
allylic alcohols
8
stereocenters hydroalkylation
4
alcohols enabled
4
enabled copper/ruthenium
4

Similar Publications

CFH-synthon enables asymmetric radical difluoroalkylation for synthesis of chiral difluoromethylated amines.

Nat Commun

January 2025

Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.

The difluoromethyl group is a crucial fluorinated moiety with distinctive biological properties, and the synthesis of chiral CF₂H-containing analogs has been recognized as a powerful strategy in drug design. To date, the most established method for accessing enantioenriched difluoromethyl compounds involves the enantioselective functionalization of nucleophilic and electrophilic CF₂H synthons. However, this approach is limited by lower reactivity and reduced enantioselectivity.

View Article and Find Full Text PDF

Synthesis and discovery of simplified pleurotin analogs bearing tricyclic core as novel thioredoxin reductase inhibitors.

Eur J Med Chem

January 2025

Laboratory of Medicinal Chemical Biology, Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Suzhou Medical College, Soochow University, 199 Ren'ai Road, Suzhou, 215123, PR China. Electronic address:

Pleurotin (1) is a benzoquinone meroterpenoid known for its wide-spectrum antitumor and antibiotic activities, notably acting as natural inhibitors of the thioredoxin reductase (TrxR). Pleurotin (1) has been chemically synthesized, but only in milligram quantities through at least 13 longest linear steps with 0.8 % overall yield due to its complex structure such as fused hexacyclic core with 8 contiguous stereocenters.

View Article and Find Full Text PDF

The α-helix is an abundant and functionally important element of protein secondary structure, which has motivated intensive efforts toward chemical strategies to stabilize helical folds. One such method is the incorporation of non-canonical backbone composition through an additional methyl substituent at the Cα atom. Examples of monomers include the achiral 2-aminoisobutyric acid (Aib) with geminal dimethyl substitution and chiral analogues with one methyl and one non-methyl substituent.

View Article and Find Full Text PDF

We report herein a robust enantioselective ring opening coupling of oxabenzonorbornadienes via Pd(II)-catalyzed domino cyclization of alkynylanilines, which features the formation of three covalent bonds and two contiguous stereocenters with excellent enantio- and diastereoselectivity and a broad substrate scope. The good functional group tolerance of this domino desymmetrization strategy enables efficient late-stage transformation of natural product-derived alkynylanilines. The resulting indolated dihydronaphthols could serve as a valuable platform to streamline the diversity-oriented synthesis of other valuable enantioenriched tetrahydronaphthalene derivatives.

View Article and Find Full Text PDF

Asymmetric gem-Hydroboration and gem-Hydrogenation of Ynamides: A New Gateway to Chiral Fischer Carbene Complexes and their Catalytic Transformations.

Angew Chem Int Ed Engl

January 2025

Max-Planck-Institut fur Kohlenforschung, Organometallic Chemistry, Kaiser-Wilhelm-Platz 1, 45470, Mülheim/Ruhr, GERMANY.

Ynamides, when reacted with H2 or HBpin in the presence of [Cp*RuCl]4, convert into chiral-at-metal Fischer carbenes by regioselective gem-hydrogenation or gem-hydroboration of the polarized triple bond, respectively. gem-Hydroboration concomitantly affords a carbogenic borylated stereocenter adjacent to the ruthenium carbene unit, the configuration of which can be controlled using an Evans auxiliary. These are the first examples of asymmetric gem-addition reactions to alkynes known in the literature; representative pianostool ruthenium carbene complexes formed by this unconventional route were characterized by crystallographic and spectroscopic means.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!