Purpose Of Review: HIV drug resistance testing using blood plasma or dried blood spots forms part of international guidelines. However, as the clinical utility of assessing drug resistance in other body compartments is less well established, we review this for blood cells and samples from other body compartments.
Recent Evidence: Although clinical benefit is not clear, drug resistance testing in blood cells is often performed when patients with suppressed plasma viral loads require a treatment substitution. In patients with HIV neurocognitive disease, cerebral spinal fluid (CSF) drug resistance is rarely discordant with plasma but has nevertheless been used to guide antiretroviral drug substitutions. Cases with HIV drug resistance in genital fluids have been documented but this does not appear to indicate transmission risk when blood plasma viral loads are suppressed.
Summary: Drug-resistant variants, which may be selected in tissues under conditions of variable adherence and drug penetration, appear to disseminate quickly, and become detectable in blood. This may explain why drug resistance discordance between plasma and these compartments is rarely found. Partial compartmentalization of HIV populations is well established for the CSF and the genital tract but other than blood plasma, evidence is lacking to support drug resistance testing in body compartments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/COH.0000000000000741 | DOI Listing |
ACS Nano
January 2025
Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
Nonantibiotic strategies are urgently needed to treat acute drug-resistant bacterial pneumonia. Recently, nanomaterial-mediated bacterial cuproptosis has arisen widespread interest due to its superiority against antibiotic resistance. However, it may also cause indiscriminate and irreversible damage to healthy cells.
View Article and Find Full Text PDFInvest New Drugs
January 2025
School of Life Sciences, Jilin University, Changchun, China.
Due to the emergence of drug resistance, androgen receptor (AR)-targeted drugs still pose great challenges in the treatment of prostate cancer, and it is urgent to explore an innovative therapeutic strategy. MK-1775, a highly selective WEE1 inhibitor, is shown to have favorable therapeutic benefits in several solid tumor models. Recent evidence suggests that the combination of MK-1775 with DNA-damaging agents could lead to enhanced antitumor efficacy.
View Article and Find Full Text PDFDiscov Oncol
January 2025
West China School of Medicine, Sichuan University, Chengdu, China.
Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g.
View Article and Find Full Text PDFHistochem Cell Biol
January 2025
Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
Gestational diabetes mellitus (GDM) significantly disrupts placental structure and function, leading to complications such as intrauterine growth restriction (IUGR) and preeclampsia. This study aimed to investigate the effects of GDM on placental histology, angiogenesis, and oxidative stress, as well as evaluate metformin's protective role in mitigating these changes. A total of 60 pregnant Sprague-Dawley rats were divided into four groups: control, metformin-treated, GDM, and GDM with metformin.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Orthopedic Surgery, Institute of Bone Tumor, Shanghai Tenth People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200092, China.
Recently, there has been burgeoning interest in the involvement of cholesterol metabolism in cancer. Squalene epoxidase (SQLE), as a critical rate-limiting enzyme in the cholesterol synthesis pathway, has garnered attention due to its overexpression in various cancer types, thereby significantly impacting tumor prognosis and resistance mechanisms. Firstly, SQLE contributes to unfavorable prognosis through diverse mechanisms, encompassing modulation of the PI3K/AKT signaling pathway, manipulation of the cancer microenvironment, and participation in ferroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!