Bat wing skin is exceptionally compliant and cambers significantly during flight. Plagiopatagiales proprii, arrays of small muscles embedded in the armwing membrane, are activated during flight and are hypothesized to modulate membrane tension. We examined the function of these muscles using Jamaican fruit bats, Artibeus jamaicensis. When these muscles were paralyzed using botulinum toxin, the bats preferred flight speed decreased and they were unable to fly at very low speeds. Paralysis of the plagiopatagiales also resulted in increased armwing camber consistent with a hypothesized role of modulating aeroelastic interactions. Other compensatory kinematics included increased downstroke angle and increased wingbeat amplitude. These results are consistent with the bats experiencing increased drag and flight power costs associated with the loss of wing-membrane control. Our results indicate that A. jamaicensis likely always employ their wing membrane muscles during sustained flight to control camber and to enhance flight efficiency over a wide flight envelope.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9377553 | PMC |
http://dx.doi.org/10.1242/jeb.243974 | DOI Listing |
Arch Toxicol
January 2025
Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China.
Human UDP-glucuronosyltransferases (UGTs) are pivotal phase II metabolic enzymes facilitating the transfer of glucuronic acid from UDP-glucuronic acid (UDPGA) to various substrates. UGTs are classic type I transmembrane glycoproteins, mainly localized in the endoplasmic reticulum (ER) membrane. This review comprehensively explores UGTs, encompassing gene expression, functional characteristics, substrate specificity, and metabolic mechanisms.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States.
Cannabinoid receptor 1 (CB1R) has been extensively studied as a potential therapeutic target for various conditions, including pain management, obesity, emesis, and metabolic syndrome. Unlike orthosteric agonists such as Δ-tetrahydrocannabinol (THC), cannabidiol (CBD) has been identified as a negative allosteric modulator (NAM) of CB1R, among its other pharmacological targets. Previous computational and structural studies have proposed various binding sites for CB1R NAMs.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
Polymer electrolyte membrane fuel cells (PEMFCs) are one of the most promising energy conversion devices due to their high efficiency and zero emission; however, two major challenges, high cost and short lifetime, have been hindering the commercialization of fuel cells. Achieving low-Pt or non-precious metal oxygen reduction reaction (ORR) electrocatalysts is one of the main research ideas in this field. In this review, the degradation mechanism of Pt-based catalysts is firstly explained and elucidated, and then five strategies are suggested for the reduction of Pt usage without loss of activity and durability: modulation of metal-support interactions, optimization of local ionomers and mass transport, modulation of composition, modulation of structure, and multi-site synergistic effects.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
Department of Nephrology, the First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang 050011,China.
Background: Shengyang Yiwei Decoction showed efficacy in idiopathic membranous nephropathy treatment, and this study aimed to assess the underlying molecular mechanisms.
Methods: Rats with passive Heymann nephritis were divided into the model group, the Shengyang Yiwei Decoction group, the JAK2 inhibitor group, and the STAT3 inhibitor group. Healthy rats served as the normal control.
Adv Mater
January 2025
Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
Antigen-presenting cells (APCs) process tumor vaccines and present tumor antigens as the first signals to T cells to activate anti-tumor immunity, which process requires the assistance of co-stimulatory second signals on APCs. The immune checkpoint programmed death ligand 1 (PD-L1) not only mediates the immune escape of tumor cells but also acts as a co-inhibitory second signal on APCs. The serious dysfunction of second signals due to the high expression of PD-L1 on APCs in the tumor body results in the inefficiency of tumor vaccines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!