The present study revealed that palmitic acid (PA) treatment induced epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells, which are involved in the progression of proliferative vitreoretinopathy (PVR). ARPE-19 cells were treated with PA followed by miRNA screening and EMT marker detection using qRT-PCR. Then, miR-124 mimic or inhibitor was transfected into ARPE-19 cells to explore the role of miR-124 on the EMT of ARPE-19 cells using transwell assay. The underlying mechanism of miRNA were predicted by bioinformatics method and confirmed by luciferase activity reporter assay. Furthermore, gain-of-function strategy was also used to explore the role of LIN7C in the EMT of ARPE-19 cells. The expression of miRNA or mRNA expression was determined by qRT-PCR and the protein expression was determined using western blot assay. The result presented that PA reduced the expression of E-cadherin/ZO-1 whilst increasing the expression of fibronectin/α-SMA. In addition, PA treatment enhanced the expression of microRNA (miR)-124 in ARPE-19 cells. Overexpression of miR-124 enhanced PA-induced upregulation of E-cadherin and ZO-1 expression and downregulation of fibronectin and α-SMA. Moreover, miR-124 mimic also enhanced the migration of ARPE-19 cells induced by PA treatment. Inversely, miR-124 inhibitor presented opposite effect on PA-induced EMT and cell migration in ARPE-19 cells. Luciferase activity reporter assay confirmed that Lin-7 homolog C (LIN7C) was a direct target of miR-124 in ARPE-19 cells. Overexpression of LIN7C was found to suppress the migration ability and expression of fibronectin and α-SMA, while increasing expression of E-cadherin and ZO-1; miR-124 mimic abrogated the inhibitive effect of LIN7C on the EMT of ARPE-19 cells and PA further enhanced this abolishment. Collectively, these findings suggest that miR-124/LIN7C can modulate EMT and cell migration in RPE cells, which may have therapeutic implications in the management of PVR diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214593PMC
http://dx.doi.org/10.3892/etm.2022.11408DOI Listing

Publication Analysis

Top Keywords

arpe-19 cells
36
cell migration
12
cells
12
mir-124 mimic
12
emt arpe-19
12
arpe-19
9
expression
9
epithelial-mesenchymal transition
8
retinal pigment
8
pigment epithelial
8

Similar Publications

Article Synopsis
  • The study aimed to assess how the SUMOylation inhibitor TAK981 affects oxidative damage caused by hydrogen peroxide (H2O2) in human retinal pigment epithelial cells (ARPE-19) and its underlying mechanisms.
  • An oxidative damage model was created, and various concentrations of TAK981 were tested to see their impact on cell viability, levels of oxidative stress markers, and inflammatory cytokines, while comparing them to control and model groups.
  • Results showed that H2O2 reduced cell viability significantly, while TAK981 treatment improved cell survival and reduced oxidative damage and inflammation markers, indicating its potential protective effects against oxidative stress in ARPE-19 cells.
View Article and Find Full Text PDF

FADS1 inhibition protects retinal pigment epithelium cells from ferroptosis in age related macular degeneration.

Eur J Pharmacol

December 2024

Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China. Electronic address:

Purpose: Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly individuals. Retinal pigment epithelium (RPE) ferroptosis is a significant pathogenetic component in AMD. This study aims to elucidate the role and mechanisms of fatty acid desaturase 1 (FADS1) in ferroptosis as well as AMD progression.

View Article and Find Full Text PDF

Singlet Oxygen-Induced Mitochondrial Reset in Cancer: A Novel Approach for Ovarian Cancer Therapy.

Metabolites

November 2024

Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, Polytechnique Montréal, Centre-Ville Station, P.O. Box 6079, Montréal, QC H3C 3A7, Canada.

: This study explores the generation of singlet oxygen (SO) through methylene blue (MB) activation as a metabolic intervention for ovarian cancer. We aimed to examine the role of SO in modulating mitochondrial function, cellular metabolism, and proliferation in ovarian cancer cell lines compared to control cells. : The study utilized two ovarian cancer cell lines, OV1369-R2 and TOV1369, along with ARPE-19 control cells.

View Article and Find Full Text PDF

Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are the primary causes of vision impairment and blindness worldwide. The current treatment for these diseases is an intravitreal injection of anti-VEGF agents, which are costly and require frequent injections. Implants can be used to sustain the release of drugs and minimize side effects.

View Article and Find Full Text PDF

Therapeutic potential of adult stem cells-derived mitochondria transfer combined with curcumin administration into ARPE-19 cells in age-related macular degeneration model.

Tissue Cell

December 2024

Department of Stem Cell, Institute of Health Sciences, Kocaeli University, Kocaeli, Turkey; Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey; Department of Histology and Embryology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey.

Objective: Mitochondria transfer from human Wharton's Jelly-derived mesenchymal stem cells (hWJ-MSCs-mt) and human endometrium-derived mesenchymal stem cells (hE-MSCs-mt), along with curcumin, were explored as potential treatments for age-related macular degeneration (AMD) caused by mitochondrial inefficiency, using a retinal model to assess impacts of curcumin and hWJ-MSCs-mt or hE-MSCs-mt on AMD.

Methods: ARPE-19 cells established an in vitro AMD model. Cells were exposed to 0-50 μM curcumin for 24 hours to determine optimal concentration by assessing their viability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!