The current study focused on targeted and non-targeted metabolomics of Citrus fruit parts (exocarp, mesocarp, endocarp, and seeds) to gain a comprehensive metabolomic insight. Sections of the Citrus fruit were preliminarily examined for proximate compositions (moisture, ash, fibre, fat, and protein). Whereas ultrasonication-assisted solvent extraction revealed a higher phenolic and flavonoid content at 80% (v/v) ethanolic medium, with the highest amount in the exocarp. Using targeted metabolomics, hesperidin (3307.25 mg/100 g), naringin (4803.73 mg/100 g) were detected in C. medica and C. maxima at greater levels, respectively. Further quantitative analysis revealed the presence of phenolic acids (gallic acid, trans-ferulic acid, p-coumaric acid, trans-cinnamic acid), and polymethoxyflavones (nobiletin, and tangeretin) and detected in the order of exocarp > mesocarp > endocarp > seeds. Using an untargeted metabolomics approach, metabolite discriminations among Citrus fruit sections were illustrated by Venn-diagram, heatmap, PCA, o-PLSDA, correlation matrices, and S-plot. UHPLC-QTOF-IMS revealed 48 metabolites including phenolics, vitamins, and amino acids. Furthermore, the METLIN database leads to the identification of 202 unknown metabolites. The metabolite biosynthesis and corresponding metabolite presence in Citrus fruit sections were confirmed using pathway enrichment and mass fragmentation analysis. Finally, potential biological activities were determined using in silico PASS software approach, and free radical scavenging potential was confirmed using in vitro assays for future preventive and therapeutic applications of the identified metabolites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2022.111486 | DOI Listing |
J Colloid Interface Sci
January 2025
School of Life Science, South China Normal University, Guangzhou 510631 China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631 China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400 China. Electronic address:
Type 2 diabetes (T2D) is a chronic disease characterized by long-term insulin resistance (IR) and pancreatic β-cell dysfunction. Conventional T2D medication ignores pancreatic β-cell damage. In this study, we designed an oral glucose-responsive nanoparticle for pancreatic β-cell regeneration and treatment of T2D.
View Article and Find Full Text PDFFood Chem
January 2025
Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China. Electronic address:
Polymethoxyflavones (PMFs) from citrus peel, including permethoxylated PMFs and hydroxylated PMFs (OH-PMFs), have attracted much attention due to their potential strong biological activities. However, characterization of PMFs through LC-MS analysis was challenged due to numerous substituent positions in flavone. In this study, twelve PMF standards were analyzed by UPLC-QTOF-MS/MS to present fingerprint retro-Diels-Alder (RDA) ions ([B], A and B(C) associated ions).
View Article and Find Full Text PDFPest Manag Sci
January 2025
Department of Plant Pathology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
Background: Bacillus species produce antimicrobial lipopeptides (LPs) and methyl jasmonate (MeJA) induces resistance in harvested fruits against postharvest pathogens. However, there is limited evidence of the combined efficacy of Bacillus LPs and MeJA to suppress postharvest diseases.
Results: This study presents the combined effect of Bacillus LPs and MeJA to suppress P.
Curr Med Chem
January 2025
Department of Periodontology, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al-Khaimah, 30248, United Arab Emirates.
Introduction: Elevated glucose can have a detrimental effect on the function and healing process of periodontal cells in inflammatory conditions. Hesperidin (HPN), a bioflavonoid found abundantly in citrus fruits, has numerous biological benefits, including regenerative and anti-inflammatory properties. The current in-vitro study aimed to assess the impact of HPN on the proliferation, wound healing, and functionality of periodontal cells in optimal and elevated glucose conditions.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan; School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan. Electronic address:
Background: Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by itching and redness, affecting individuals of all ages and significantly impairing their quality of life. The prevalence of AD is rising, posing serious health concern. Relief of itching is a primary treatment objective; however, steroid treatments can lead to adverse effects, including skin barrier thinning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!