We present a dynamic, semi-mechanistic, compartmental protein digestion model to study the kinetics of protein digestion. The digestive system is described as a series of eight compartments: one for the stomach, one for the duodenum, two for the jejunum and four for the ileum. The digestive processes are described by a set of zero or first order differential equations. The model considers ingestion of a meal, secretion of gastric and pancreatic juices, protein hydrolysis, grinding, transit and amino acid absorption. The model was used to simulate protein digestion of a meal composed of a solid and a liquid phase or one where both phases are blended into a homogeneous phase. Luminal volumes and pH of gastric and duodenal contents were estimated for both meals. Further, gastric emptying is described as a function of the energy density of the bolus, instead of the more common mass action approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2022.111271DOI Listing

Publication Analysis

Top Keywords

protein digestion
16
protein
5
silico modelling
4
modelling protein
4
digestion
4
digestion case
4
case study
4
study solid/liquid
4
solid/liquid blended
4
blended meals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!