A greenhouse experiment was conducted to study the effects of the application of a plant-derived biostimulant (Bioup® TF) on fruit quality and composition of two clusters (cluster II and cluster VI) of the cherry tomato cultivars 'Eletta', 'Kaucana', and 'Top Stellina'. The biostimulant application promoted fruit yield by 12% (up to 1.3 kg m in 'Kaucana') and increased the concentrations of important functional constituents like phytoene, γ-tocopherol and β-tocopherol by up to 16, 25, and 23%, respectively. Fruits from late-ripe cluster VI showed higher fruit weights, D-fructose, and total sugar contents than those from early-ripe cluster II (by 15, 7 and 5%, respectively), but reduced concentrations of acyclic carotenoids (phytoene and lycopene) and tocochromanols (mainly γ-tocopherol, -44%). 'Top Stellina' showed the highest responsiveness to the biostimulant, as particularly (all-E)-β-carotene, phytofluene, and γ-tocopherol concentrations increased, indicating a genotype-dependent effect of the treatment. However, fruits of all treated genotypes showed a contextual decrease in D-fructose and total sugars in response to the biostimulant (on average by 7 and 10%, respectively), indicating a metabolic load burdening the accumulation of lipophilic antioxidants in cherry tomatoes at the expense of their taste-related C pool.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2022.111218 | DOI Listing |
Heliyon
January 2025
CNR-Istituto per la BioEconomia (IBE), Sede Secondaria di Catania, Via P. Gaifami 18, 95126, Catania, Italy.
Recently, the use of plant-derived biostimulants has been suggested as a sustainable way to improve the nutritional quality of tomato and mitigate the effects of environmental stresses In this regard, a two-year experiment was conducted in open field on four cultivars of tomato (two commercial tomatoes and two local landraces of long shelf-life tomato), to assess the crop response, in terms of fruit yield and quality traits, to the foliar application of two plant-derived biostimulants based on protein hydrolysates (PH), under opposite water regimes (no irrigation and full irrigation), in a semi-arid environment of South Italy. Tomato plants in field were sprayed with a solution containing one of the two biostimulants approximately every 15 days. Full irrigation significantly promoted plant productivity, leading to yields the 22 % and 57 % higher than those produced under no irrigation.
View Article and Find Full Text PDFPhysiol Plant
December 2024
Biotechnology Department, University of Verona, Verona, Italy.
Plant-derived biostimulants have gained attention in agricultural practices for their potential to enhance crop quality and resilience. In this study, we investigated the effects of applying a maize gluten-derived protein hydrolysate at the soil level in vineyards on berry quality in a table grape variety, the Black Magic early table grapevine, during veraison. Our results demonstrate significant improvements in various parameters 14 days after application, including increased anthocyanin levels, enhanced sugar accumulation, and larger berry diameter while maintaining berry firmness.
View Article and Find Full Text PDFHeliyon
October 2024
Department of Agricultural and Environmental Science, University of Milan, Via Celoria 2, 20133, Milan, Italy.
Microbiol Res
January 2025
Microbial Technologies Division, Council of Scientific and Industrial Research-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India. Electronic address:
Drought is a significant abiotic stress that adversely affects the physiological and biochemical processes in crops, posing a considerable challenge to agricultural productivity. The present study explored the efficacy of plant-derived biostimulant (PDB) and plant growth-promoting rhizobacteria (PGPR) strains Pseudomonas putida (RA) and Paenibacillus lentimorbus CHM12) in the management of negative impacts of drought stress in Zea mays (maize). Adathoda vasica leaf extracts (ADLE) emerged as the most potent biostimulant of the seven evaluated medicinal plant extracts.
View Article and Find Full Text PDFPlants (Basel)
July 2024
Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, v.v.i, Šlechtitelů 11, 78371 Olomouc, Czech Republic.
Smoke-water (SW) and Karrikinolide1 (KAR) release dormancy and improve seed germination in many plant species. Therefore, we tested SW (1:2500 /) and KAR (10 M) to break the morphological dormancy of celery cultivar ( L.).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!