In this study we investigated the individual contribution of different ingredients to the lubrication properties of dairy-based model beverages containing whey protein (native or aggregated), micellar casein and emulsified oil in different combinations. In single-component systems, whey protein isolate (WPI) solutions showed the lowest friction coefficients of all protein samples. Whey protein aggregates (WPA, ∼247 nm, irregular morphology) led to higher friction coefficients than micellar casein isolate (MCI) with comparable size (∼207 nm, near spherical shape). When protein particles were combined, i.e. WPA and MCI, lubrication was not much affected. However, when WPI was added to either WPA or MCI, higher friction coefficients were observed compared to single-component systems. Emulsions (droplet size ∼ 440 nm) provided better lubrication than the protein samples. Oil droplets stabilized by soy lecithin (SL) were more efficient at reducing friction than those stabilized by WPI. The friction coefficient of SE strongly increased in the presence of WPI. In comparison, lubrication of WE was less affected by the addition of WPI. These results show that different proteins affect the lubrication properties of emulsions stabilized with different emulsifiers in a different way. Our research also indicates that multicomponent systems are complex, and that control over the lubrication properties requires a better understanding of the contribution of individual components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2022.111209 | DOI Listing |
Environ Sci Pollut Res Int
December 2024
Department of Mechanical Engineering, K. Ramakrishnan College of Engineering, Samayapuram, Trichy, India.
Lubricants are pivotal in mitigating friction and wear between surfaces, ensuring seamless movement of solid objects. However, the predominant use of petroleum-based lubricants in the automotive and industrial ssectors raises substantial concerns for future energy security. The exploration of vegetable oils as an alternative lubricant in the automotive industry was motivated by the depletion of fossil fuels and escalating environmental concerns.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Italy.
Hypothesis: Bubbles oscillating near a free surface are common across numerous systems. Thin liquid films (TLFs) formed between an oscillating bubble and a free surface can exhibit distinct morphological features influenced by interfacial properties, evaporation, and deformation history. We hypothesize that a continuous film presence throughout oscillation results in a wimple morphology, whereas intermittent film presence leads to a dimple formation.
View Article and Find Full Text PDFSci Rep
December 2024
Ecole Centrale de Lyon, CNRS, ENTPE, LTDS, Ecully, UMR5513, 69130, France.
In the context of the oral cavity, an organic layer known as the mucosal pellicle (MP) adheres to the surface of the oral epithelium, playing a pivotal role in lubricating and safeguarding oral tissues. The formation of the MP is driven by interactions between a transmembrane mucin known as MUC1, located on the oral epithelium, and salivary secreted mucin, namely MUC5B and MUC7. This study aimed to investigate the function of MUC1 and the influence of its structure on MP lubrication properties.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
Nanometer-thick ultrathin coatings with superior mechanical strength and desirable lubricating and antifouling performance are critical for the miniaturization of implantable medical devices. However, integrating these properties at the nanoscale remains challenging due to the inherent trade-off between mechanical strength and hydration as well as limitations in coating thickness. In this work, we address these challenges by employing dual-function metal coordination to construct a ∼25 nm thick bilayer structure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, School of Chemistry, Northeast Normal University, Changchun 130024, China.
Liposomes have attracted attention in biomedicine and pharmacy for their benefits including reduced toxicity, extended pharmacokinetics, and biocompatibility. However, their limitations include susceptibility to blood clearance, rapid disintegration, and lack of functionality, restricting their further applications. To address these challenges, inspired by the unique topological features of cyclic polymers and the specific binding property of the choline phosphate (CP) lipid, dipole-dipole interactions between CP molecules are utilized to create a detachable cyclic PEG-embedded CP liposome (d-cycPEG-lipo).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!