Background: Bone morphogenetic proteins (BMP) are evolutionarily conserved morphogens that are reactivated in lung carcinomas. In lung cancer cells, BMP signaling suppresses AMP activated kinase (AMPK) by inhibiting LKB1. AMPK is activated by mitochondrial stress that inhibits ATP production, which is enhanced 100-fold when phosphorylated by LKB1. Activated AMPK can promote survival of cancer cells but its "hyperactivation" induces cell death. The studies here reveal novel cell death mechanisms induced by BMP inhibitors, together with agents targeting the mitochondria, which involves the "hyperactivation" of AMPK.

Methods: This study examines the synergistic effects of two BMP inhibitors together with mitochondrial targeting agents phenformin and Ym155, on cell death of lung cancer cells expressing LKB1 (H1299), LKB1 null (A549), and A549 cells transfected with LKB1 (A549-LKB1). Cell death mechanisms evaluated were the activation of caspases and the nuclear localization of apoptosis inducing factor (AIF). A769662 was used to allosterically activate AMPK. Knockdown of BMPR2 and LKB1 using siRNA was used to examine their effects on nuclear localization of AMPK. Validation studies were performed on five passage zero primary NSCLC.

Results: Both BMP inhibitors synergistically suppressed growth when combined with Ym155 or phenformin in cells expressing LKB1. The combination of BMP inhibitors with mitochondrial targeting agents enhanced the activation of AMPK in lung cancer cells expressing LKB1. Allosteric activation of AMPK with A769662 induced cell death in both H1299 and A549 cells. Cell death induced by the combination of BMP inhibitors and mitochondrial-targeting agents did not activate caspases. The combination of drugs induced nuclear localization of AIF in cells expressing LKB1, which was attenuated by knockdown of LKB1. Knockdown of BMPR2 together with Ym155 increased nuclear localization of AIF. Combination therapy also enhanced cell death and AIF nuclear localization in primary NSCLC.

Conclusions: These studies demonstrate that inhibition of BMP signaling together with mitochondrial targeting agents induce AIF caspase-independent cell death, which involves the "hyperactivation" of AMPK. AIF caspase-independent cell death is an evolutionarily conserved cell death pathway that is infrequently studied in cancer. These studies provide novel insight into mechanisms inducing AIF caspase-independent cell death in cancer cells using BMP inhibitors. Video Abstract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9238106PMC
http://dx.doi.org/10.1186/s12964-022-00905-4DOI Listing

Publication Analysis

Top Keywords

cell death
48
cancer cells
24
bmp inhibitors
24
nuclear localization
20
targeting agents
16
aif caspase-independent
16
caspase-independent cell
16
lung cancer
16
cells expressing
16
expressing lkb1
16

Similar Publications

Malaria is a major public healthcare concern worldwide, representing a leading cause of death in specific regions. The gold standard for diagnosis is microscopic analysis, but this requires a laboratory setting, trained staff, and infrastructure and is therefore typically slow and dependent on the experience of the technician. This study introduces, for the first time, a biomimetic sensing platform for the direct detection of the disease.

View Article and Find Full Text PDF

A Integrated Molecule Based on Ferritin Nanoplatforms for Inducing Tumor Ferroptosis with the Synergistic Photo/Chemodynamic Treatment.

ACS Appl Mater Interfaces

January 2025

Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, Guangdong 523058, China.

Ferroptosis combined with photodynamic therapy (PDT) has emerged as a powerful approach to induce cancer cell death by producing and accumulating lethal reactive oxygen species (ROS) in the tumor microenvironment (TME). Despite its efficacy and safety, challenges persist in delivering multiple drugs to the tumor site for enhanced antitumor efficacy and improved tissue targeting. Hence, we designed a method of inducing ferroptosis through laser-mediated and human homologation-specific efficient activation, which is also a ferroptosis therapy with higher safety through ROS-mediated.

View Article and Find Full Text PDF

Objective: To determine the association between concurrent statin use with immune checkpoint inhibitors (ICIs) and lung cancer-specific and overall mortality in patients with nonsmall cell lung cancer (NSCLC).

Materials And Methods: SEER-Medicare was used to conduct a retrospective study of Medicare beneficiaries ≥65 years of age diagnosed with NSCLC between 2007 and 2017 treated with an ICI. Patients were followed from date of first ICI claim until death, 1 month from last ICI claim, or 12/31/2018, whichever came first.

View Article and Find Full Text PDF

Temporal dynamics of PM induced cell death: Emphasizing inflammation as key mediator in the late stages of prolonged myocardial toxicity.

Exp Cell Res

January 2025

Cardiovascular Center, College of Medicine, University of Cincinnati, Ohio-45267, United States of America; School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur-613401, Tamil Nadu, India. Electronic address:

Multiple forms of cell death contribute significantly to cardiovascular pathologies, negatively impacting cardiac remodeling and leading to heart failure. While myocardial cell death has been associated with PM induced cardiotoxicity, the temporal dynamics of various cell death forms, such as apoptosis, ferroptosis, necroptosis, and pyroptosis, in relation to inflammatory processes, remain underexplored. This study examines the time-dependent onset and progression of these cell death pathways in the myocardium and their correlation with inflammation in a Wistar rat model.

View Article and Find Full Text PDF

Designing an anticancer Pd(II) complex as poly(ADP-ribose) polymerase 1 inhibitor.

Int J Biol Macromol

January 2025

School of Biological and Food Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China. Electronic address:

Targeting DNA repair mechanisms, particularly PARP-1 inhibition, has emerged as a promising strategy for developing anticancer therapies. we designed and synthesized two 2-thiazolecarboxaldehyde thiosemicarbazone palladium(II) complexes (C1 and C2), and evaluated their anti-cancer activities. These Pd(II) complexes exhibited potent PARP-1 enzyme inhibition and demonstrated considerable antiproliferative activity against various cancer cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!