Background: Cutaneous electrogastrography (EGG) is a non-invasive technique that detects gastric bioelectrical slow waves, which in part govern the motility of the stomach. Changes in gastric slow waves have been associated with a number of functional gastric disorders, but to date accurate detection from the body-surface has been limited due to the low signal-to-noise ratio. The main aim of this study was to develop a flexible active-electrode EGG array.
Methods: Two Texas Instruments CMOS operational amplifiers: OPA2325 and TLC272BID, were benchtop tested and embedded in a flexible linear array of EGG electrodes, which contained four recording electrodes at 20-mm intervals. The cutaneous EGG arrays were validated in ten weaner pigs using simultaneous body-surface and serosal recordings, using the Cyton biosensing board and ActiveTwo acquisition systems. The serosal recordings were taken using a passive electrode array via surgical access to the stomach. Signals were filtered and compared in terms of frequency, amplitude, and phase-shift based on the classification of propagation direction from the serosal recordings.
Results: The data were compared over 709 cycles of slow waves, with both active cutaneous EGG arrays demonstrating comparable performance. There was an agreement between frequencies of the cutaneous EGG and serosal recordings (3.01 ± 0.03 vs 3.03 ± 0.05 cycles per minute; p = 0.75). The cutaneous EGG also demonstrated a reduction in amplitude during abnormal propagation of gastric slow waves (310 ± 50 µV vs 277 ± 9 µV; p < 0.01), while no change in phase-shift was observed (1.28 ± 0.09 s vs 1.40 ± 0.10 s; p = 0.36).
Conclusion: A sparse linear cutaneous EGG array was capable of reliably detecting abnormalities of gastric slow waves. For more accurate characterization of gastric slow waves, a two-dimensional body-surface array will be required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9238032 | PMC |
http://dx.doi.org/10.1186/s12938-022-01010-w | DOI Listing |
BMC Public Health
January 2025
Department of General Practice, The First Dongguan Affiliated Hospital at Guangdong Medical University, Dongguan, 523808, China.
Background: The association between social capital and trajectories of cognitive function (CF) is still unclear among older adults in mainland China. The present study aims to examine the association using a longitudinal cohort from the Ningxia Healthy Aging Cohort.
Methods: Four waves of longitudinal data were abstracted to identify the CF trajectories using the conditional latent class growth model (LCGM).
Prog Neurobiol
January 2025
Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain. Electronic address:
Elucidating human cerebral cortex function is essential for understanding the physiological basis of both healthy and pathological brain states. We obtained extracellular local field potential recordings from cortical slices of neocortical tissue from refractory epilepsy patients. Multi-electrode recordings were combined with histological information, providing a two-dimensional spatiotemporal characterization of human cortical dynamics in control conditions and following modulation of the excitation/inhibition balance.
View Article and Find Full Text PDFNeurol Res
January 2025
Faculty of Medicine, Department of Biophysics, Karadeniz Technical University, Trabzon, Turkey.
Introduction: We aimed to investigate the effects of central kisspeptin-10 and p234 administration on basal brain activity and epilepsy-like conditions induced by 4-aminopyridine (4-AP), as well as their roles in the electrocorticogram (ECoG) power spectrum and EEG waves.
Methods: Thirty-five male Wistar rats were divided into five groups: sham,4-AP (2.5 mg/kg i.
PLoS Biol
January 2025
Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, United States of America.
Perceptual awareness results from an intricate interaction between external sensory input and the brain's spontaneous activity. Pre-stimulus ongoing activity influencing conscious perception includes both brain oscillations in the alpha (7 to 14 Hz) and beta (14 to 30 Hz) frequency ranges and aperiodic activity in the slow cortical potential (SCP, <5 Hz) range. However, whether brain oscillations and SCPs independently influence conscious perception or do so through shared mechanisms remains unknown.
View Article and Find Full Text PDFPulsating blood vessels push fluid into and out of the brains of slumbering mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!