With the intensive therapeutic strategies, diffuse large B-cell lymphoma (DLBCL) is still a fatal disease due to its progressive characteristics. Indoleamine 2,3-dioxygenase 1 (IDO1) is a key regulator that catalyzes the commitment step of the kynurenine pathway in the immune system, its aberrant activation may contribute to malignant cell escape eradication. However, the role of IDO1 in DLBCL progression remains elusive. Our study showed IDO1 expression was upregulated in DLBCL and was associated with a poor prognosis and low overall survival. Inhibition of IDO1 suppressed DLBCL cell proliferation in vitro and impeded xenograft tumorigenesis in vivo. RNA-seq analyses revealed MDM2 was downregulated while TP53 was upregulated in IDO1 inhibition OCI-Ly10 cells. Mechanistically, IDO1 inhibition decreased the expression of MDM2, a major negative regulator of p53, and restored p53 expression in OCI-Ly3 and OCI-Ly10 cells, resulting in cell cycle arrest and apoptosis. IDO1 inhibition induced cell apoptosis coupled with PUMA and BAX upregulation, as well as BCL2 and BCL-XL downregulation. In addition, p21, a p53 transcriptional target, was upregulated in cell cycle arrest. Taken together, this study revealed IDO1 is essential for the proliferation of DLBCL cells and may be a potential therapeutic target for the treatment of DLBCL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237101PMC
http://dx.doi.org/10.1038/s41419-022-05021-2DOI Listing

Publication Analysis

Top Keywords

ido1 inhibition
12
ido1
9
diffuse large
8
large b-cell
8
b-cell lymphoma
8
oci-ly10 cells
8
cell cycle
8
cycle arrest
8
dlbcl
6
cell
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!