Introduction: Spinal cord stimulation (SCS) can provide long-term pain relief for various chronic pain conditions, but some patients have no relief with trial stimulation or lose efficacy over time. To "salvage" relief in patients who do not respond or have lost efficacy, alternative stimulation paradigms or anatomical targets can be considered. Dorsal root ganglion stimulation (DRG-S) has a different mechanism of action and anatomical target than SCS.

Objectives: We assessed DRG-S salvage therapy outcomes in patients who did not respond to SCS or had lost SCS efficacy.

Materials And Methods: We retrospectively included consecutive patients from 2016 to 2020 who were salvaged with DRG-S after failed SCS trials (<50% pain reduction) or who had lost efficacy after permanent SCS. We compared numerical rating scale (NRS) pain, Oswestry disability index (ODI), health-related quality of life (EuroQol five-dimensions five-level), and oral morphine equivalent (OME) opioid requirements before DRG-S salvage and at patients' last follow-up.

Results: A total of 60 patients who had failed SCS were salvaged with DRG-S. The mean age was 56 ± 12 years, and the most common diagnoses were complex regional pain syndrome (n = 24) and failed back surgery syndrome (n = 24). The most common failed modalities included tonic (n = 32), Burst (n = 18), and high-frequency (n = 10) SCS. The median follow-up duration of salvage DRG-S was 34 months. With DRG-S, NRS decreased (8.7 ± 1.2 to 3.8 ± 2.1), and OME declined (median 23 mg to median 15 mg), whereas EuroQol 5D scores increased (0.40 ± 0.15 to 0.71 ± 0.15), and ODI improved (64 ± 14% to 31 ± 18%) (all p < 0.05).

Conclusions: DRG-S can be used in patients with chronic pain who have previously failed to receive persistent benefit from SCS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurom.2022.04.050DOI Listing

Publication Analysis

Top Keywords

dorsal root
8
root ganglion
8
ganglion stimulation
8
salvage therapy
8
spinal cord
8
cord stimulation
8
patients respond
8
stimulation
6
stimulation salvage
4
therapy failed
4

Similar Publications

Construction of a Novel Necroptosis-Related Signature in Rat DRG for Neuropathic Pain.

J Inflamm Res

January 2025

Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Center of Innovative Drug Research and Evaluation, Hebei Medical University, Shijiazhuang, People's Republic of China.

Background: Recent studies have shown necroptosis may play a role in the development of inflammation-associated pain. However, research on the correlation between necroptosis-related genes and neuropathic pain in the dorsal root ganglia (DRG) is limited. This study aims to identify a gene signature related to necroptosis in DRG that can predict neuropathic pain.

View Article and Find Full Text PDF

Guillain-Barré syndrome (GBS) is a complex and potentially life-threatening disease, representing the most common cause of acute neuromuscular paralysis worldwide. Its diagnosis is primarily based on clinical findings, often complemented by electrophysiological studies and laboratory investigations. Therefore, knowledge of the clinical signs and symptoms is essential to make a prompt diagnosis and allow timely initiation of therapeutic interventions.

View Article and Find Full Text PDF

Synchrotron X-ray micro-computed tomography enhances our knowledge of the skull anatomy of a Late Triassic ecteniniid cynodont with hypercanines.

Anat Rec (Hoboken)

January 2025

Instituto de Plasmas e Fusão Nuclear & Centro de Recursos Naturais e Ambiente (CERENA), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.

Hypercanines, or hypertrophied canines, are observed in a wide range of both extinct and extant synapsids. In non-mammaliaform cynodonts, the Permo-Triassic forerunners of mammals, long canines are not uncommon, appearing in several unrelated taxa within the clade. Among them is Trucidocynodon riograndensis, a carnivorous ecteniniid cynodont from the Late Triassic of Brazil, which exhibits a specialized dentition, including spear-shaped incisors, very long and narrow canines, and sectorial postcanines with distally oriented cusps, all of which have finely serrated margins.

View Article and Find Full Text PDF

Risk of intrafascicular spread after deliberate ex vivo intraneural injections of brachial plexus nerve roots.

Br J Anaesth

January 2025

Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL, USA; CEU-San-Pablo University School of Medicine, Madrid, Spain; Department of Anesthesiology, Madrid-Montepríncipe University Hospital, Madrid, Spain. Electronic address:

Background: We investigated the intraneural spread of injected fluid in brachial plexus nerve roots, examining the potential for intrafascicular spread and identifying influencing factors.

Methods: Twelve deliberate ultrasound-guided intraneural injections were performed at the ventral rami of the brachial plexus nerve roots at their exits from the neuroforamina in six fresh, unembalmed, cryopreserved human cadavers. A 22-G, 30-degree bevel echogenic regional anaesthesia needle was used.

View Article and Find Full Text PDF

Protocol to study neuronal membrane proteasome function in mouse peripheral sensory neurons.

STAR Protoc

January 2025

Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA; Center for Translational Research and Education, Health Sciences Campus, 2160 South First Avenue, Maywood, IL 60153, USA. Electronic address:

Neuronal membrane proteasomes (NMPs) are expressed on a subset of somatosensory dorsal root ganglion (DRG) neurons and influence mechanical and pain sensitivity. Here, we present a protocol for studying NMP function in mouse peripheral sensory neurons. We describe steps for procuring and culturing primary DRG neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!