Corrosion is a major problem resulting from acid gases found in natural gas being transported in pipelines. To solve this problem, high aspect ratio h-BN nanosheets have been incorporated and are properly assimilated in the CA matrix, this led to an increase in tortuous path of flow for the gas resulting in smooth, dense membrane samples causing exceptional permeability reduction. Hexagonal Boron Nitride (h-BN) nanosheets have been synthesized and incorporated into cellulose acetate (CA) matrix using solution casting method. Nanosheets of various sizes, separated by varying centrifugation speeds (i.e. 500 rpm, 700 rpm, 1500 rpm, 2000 rpm and 2500 rpm), have been prepared and used for our work. The resulting nanocomposites, having thickness ranging between 40 and 60 μm, were then tested for CO gas permeability reduction using both short-term (8 h) tests as well as long-term (72-h tests). As a result of these tests, a maximum CO permeability reduction of 99.84% is found with a minimum CO permeability of 3.25 barrer. For dimensional analysis of both nanosheets and nanocomposites, scanning electron microscopy (SEM) analysis is used. For verifying the presence of the required functional groups in our synthesized samples, FT-IR spectroscopy is used. Moreover, to confirm the presence of crystalline phases, X-ray Diffraction (XRD) analysis is used. Also, tensile testing is used to analyze the mechanical robustness and it was found that nanocomposite samples exhibited higher tensile strength as compared to pristine samples. Furthermore, tribological property analysis was also carried out for adhesion testing of polymeric material with steel.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.135466DOI Listing

Publication Analysis

Top Keywords

permeability reduction
12
h-bn nanosheets
8
environmental treatment
4
treatment remediation
4
remediation h-bn
4
h-bn based
4
based smart
4
smart hybrid
4
hybrid membrane
4
membrane corrosion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!