Respiratory complex I with charge symmetry in the membrane arm pumps protons.

Proc Natl Acad Sci U S A

Institute of Biochemistry, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University, 79104 Freiburg, Germany.

Published: July 2022

Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, is essential for cellular energy metabolism coupling NADH oxidation to proton translocation. The mechanism of proton translocation by complex I is still under debate. Its membrane arm contains an unusual central axis of polar and charged amino acid residues connecting the quinone binding site with the antiporter-type subunits NuoL, NuoM, and NuoN, proposed to catalyze proton translocation. Quinone chemistry probably causes conformational changes and electrostatic interactions that are propagated through these subunits by a conserved pattern of predominantly lysine, histidine, and glutamate residues. These conserved residues are thought to transfer protons along and across the membrane arm. The distinct charge distribution in the membrane arm is a prerequisite for proton translocation. Remarkably, the central subunit NuoM contains a conserved glutamate residue in a position that is taken by a lysine residue in the two other antiporter-type subunits. It was proposed that this charge asymmetry is essential for proton translocation, as it should enable NuoM to operate asynchronously with NuoL and NuoN. Accordingly, we exchanged the conserved glutamate in NuoM for a lysine residue, introducing charge symmetry in the membrane arm. The stably assembled variant pumps protons across the membrane, but with a diminished H/e stoichiometry of 1.5. Thus, charge asymmetry is not essential for proton translocation by complex I, casting doubts on the suggestion of an asynchronous operation of NuoL, NuoM, and NuoN. Furthermore, our data emphasize the importance of a balanced charge distribution in the protein for directional proton transfer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271201PMC
http://dx.doi.org/10.1073/pnas.2123090119DOI Listing

Publication Analysis

Top Keywords

proton translocation
24
membrane arm
20
respiratory complex
8
charge symmetry
8
symmetry membrane
8
pumps protons
8
translocation complex
8
antiporter-type subunits
8
nuol nuom
8
nuom nuon
8

Similar Publications

The vacuolar ATPase (v-ATPase) is essential for acidification of intracellular organelles, including synaptic vesicles. Its activity is controlled by cycles of association and dissociation of the ATP hydrolysis (V) and proton transport (V) multi-protein subunits. Mutations in genes coding for both v-ATPase subunits and TBC1D24 cause neurodevelopmental disorders with overlapping syndromes; therefore, it is important to investigate their potentially interrelated functions.

View Article and Find Full Text PDF

For the protozoan parasite Leishmania, completion of its life cycle requires sequential adaptation of cellular physiology and nutrient scavenging mechanisms to the different environments of a sand fly alimentary tract and the acidic mammalian host cell phagolysosome. Transmembrane transporters are the gatekeepers of intracellular environments, controlling the flux of solutes and ions across membranes. To discover which transporters are vital for survival as intracellular amastigote forms, we carried out a systematic loss-of-function screen of the L.

View Article and Find Full Text PDF

Drug inhibition and substrate transport mechanisms of human VMAT2.

Nat Commun

January 2025

Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China.

Vesicular monoamine transporter 2 (VMAT2) is crucial for packaging monoamine neurotransmitters into synaptic vesicles, with their dysregulation linked to schizophrenia, mood disorders, and Parkinson's disease. Tetrabenazine (TBZ) and valbenazine (VBZ), both FDA-approved VMAT2 inhibitors, are employed to treat chorea and tardive dyskinesia (TD). Our study presents the structures of VMAT2 bound to substrates serotonin (5-HT) and dopamine (DA), as well as the inhibitors TBZ and VBZ.

View Article and Find Full Text PDF

Vacuolar H-ATPase and Megalin-Mediated Prorenin Uptake: Focus on Elements Beyond the (Pro)Renin Receptor.

J Cell Physiol

January 2025

Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.

Megalin is a multiple-ligand receptor that contributes to protein reabsorption in the kidney. Recently, megalin was found to act as a novel endocytic receptor for prorenin. Internalization depended on the (pro)renin receptor.

View Article and Find Full Text PDF

Genetic studies in Escherichia coli have implicated the unphosphorylated version of PtsN (unphospho-PtsN), the terminal phospho-acceptor of the PtsP-PtsO-PtsN phosphorelay, as a negative regulator of potassium (K) efflux mediated by YcgO. YcgO is a protein belonging to the CPA1 family of monovalent cation/proton antiporters. Here we show that in vivo, YcgO comprises an approximately 383 amino acid N-terminal transmembrane domain (TMD) and a 195 amino acid C-terminal cytoplasmic region (CTR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!