DNA methyltransferase inhibitors (DNMTis) reexpress hypermethylated genes in cancers and leukemias and also activate endogenous retroviruses (ERVs), leading to interferon (IFN) signaling, in a process known as viral mimicry. In the present study we show that in the subset of acute myeloid leukemias (AMLs) with mutations in , associated with poor prognosis, DNMTis, important drugs for treatment of AML, enable expression of ERVs and IFN and inflammasome signaling in a STING-dependent manner. We previously reported that in solid tumors poly ADP ribose polymerase inhibitors (PARPis) combined with DNMTis to induce an IFN/inflammasome response that is dependent on STING1 and is mechanistically linked to generation of a homologous recombination defect (HRD). We now show that STING1 activity is actually increased in mutant compared with wild-type (WT) AML. Moreover, in mutant AML, STING1-dependent IFN/inflammatory signaling is increased by DNMTi treatment, whereas in AMLs with WT , DNMTis alone have no effect. While combining DNMTis with PARPis increases IFN/inflammatory gene expression in WT AML cells, signaling induced in mutant AML is still several-fold higher. Notably, induction of HRD in both mutant and WT AMLs follows the pattern of STING1-dependent IFN and inflammatory signaling that we have observed with drug treatments. These findings increase our understanding of the mechanisms that underlie DNMTi + PARPi treatment, and also DNMTi combinations with immune therapies, suggesting a personalized approach that statifies by status, for use of such therapies, including potential immune activation of STING1 in AML and other cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271208 | PMC |
http://dx.doi.org/10.1073/pnas.2123227119 | DOI Listing |
Cell Rep
January 2025
Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Electronic address:
CD226 plays a vital role in natural killer (NK) cell cytotoxicity, interacting with its ligands CD112 and CD155 to initiate immune synapse formation, primarily through leukocyte function-associated-1 (LFA-1). Our study examined the role of CD226 in NK cell surveillance of acute myeloid leukemia (AML). NK cells in patients with AML had lower expression of CD226.
View Article and Find Full Text PDFPediatr Blood Cancer
January 2025
Departments of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Rearrangements of cytokine receptor-like factor 2 gene (CRLF2) are present in ∼50% of B-lymphoblastic leukemia/lymphoma (B-ALL) with BCR::ABL1-like features. Herein, we report three patients with CRLF2-rearranged mixed phenotype acute leukemia (MPAL). All three cases were B/myeloid MPAL in young patients harboring P2RY8::CRLF2 or IGH::CRLF2 with additional genomic alterations in signaling (JAK and RAS) and cell cycle (CDKN2A/B) pathways, a genomic profile similar to that in BCR::ABL1-like B-ALL.
View Article and Find Full Text PDFIntroduction: Leukemic stemcells (LSC) are the source of relapse in acute myeloid leukemia (AML). Thus,eliminating LSC is one of the overarching goals of AML research. Radioimmunotherapyis an immunotherapeutic approach which utilizes radioactive isotopes aseffector molecules based on the proven ability of ionizing radiation (IR) tokill LSC.
View Article and Find Full Text PDFMol Oncol
January 2025
Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Germany.
Hypermethylation of tumor suppressor genes is a hallmark of leukemia. The hypomethylating agent decitabine covalently binds, and degrades DNA (cytosine-5)-methyltransferase 1 (DNMT1). Structural similarities within DNA-binding domains of DNMT1, and the leukemic driver histone-lysine N-methyltransferase 2A (KMT2A) suggest that decitabine might also affect the latter.
View Article and Find Full Text PDFClin Lymphoma Myeloma Leuk
December 2024
Department of Intensive Care Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China. Electronic address:
Background: Invasive fungal disease (IFD) poses significant challenges for critically ill patients with hematological malignancies (HMs). However, there is limited research on the clinical characteristics, risk factors, and outcomes of IFD within this population.
Method: A retrospective study was conducted at a tertiary center in China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!