Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
As an important derivative of graphene-based materials, graphene oxide (GO) not only plays an important role not only in optoelectronics and sensing but also in biology due to its unique mechanical, electronic, and optical properties. This article reviews the application of GO-based hydrogels in bone tissue engineering. Whether it is a hydrogel synthesized with natural polymer compounds, synthetic polymer chemicals, bioceramics, bioactive factors, or other materials, the addition of GO can significantly improve various properties of the hydrogel. We also introduce some high-performance GO-based hydrogels in this paper, proposing some insights into materials that may be applied to bone tissue engineering in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.2c00396 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!