Nipah virus (NiV) disease is a bat-borne zoonosis responsible for outbreaks with high lethality and is a priority for vaccine development. With funding from the Coalition of Epidemic Preparedness Innovations (CEPI), we are developing a chimeric vaccine (PHV02) composed of recombinant vesicular stomatitis virus (VSV) expressing the envelope glycoproteins of both Ebola virus (EBOV) and NiV. The EBOV glycoprotein (GP) mediates fusion and viral entry and the NiV attachment glycoprotein (G) is a ligand for cell receptors, and stimulates neutralizing antibody, the putative mediator of protection against NiV. PHV02 is identical in construction to the registered Ebola vaccine (Ervebo) with the addition of the NiV G gene. NiV ephrin B2 and B3 receptors are expressed on neural cells and the wild-type NiV is neurotropic and causes encephalitis in affected patients. It was therefore important to assess whether the NiV G alters tropism of the rVSV vector and serves as a virulence factor. PHV02 was fully attenuated in adult hamsters inoculated by the intramuscular (IM) route, whereas parental wild-type VSV was 100% lethal. Two rodent models (mice, hamsters) were infected by the intracerebral (IC) route with graded doses of PHV02. Comparator active controls in various experiments included rVSV-EBOV (representative of Ebola vaccine) and yellow fever (YF) 17DD commercial vaccine. These studies showed PHV02 to be more neurovirulent than both rVSV-EBOV and YF 17DD in infant animals. PHV02 was lethal for adult hamsters inoculated IC but not for adult mice. In contrast YF 17DD retained virulence for adult mice inoculated IC but was not virulent for adult hamsters. Because of the inconsistency of neurovirulence patterns in the rodent models, a monkey neurovirulence test (MNVT) was performed, using YF 17DD as the active comparator because it has a well-established profile of quantifiable microscopic changes in brain centers and a known reporting rate of neurotropic adverse events in humans. In the MNVT PHV02 was significantly less neurovirulent than the YF 17DD vaccine reference control, indicating that the vaccine will have an acceptable safety profile for humans. The findings are important because they illustrate the complexities of phenotypic assessment of novel viral vectors with tissue tropisms determined by transgenic proteins, and because it is unprecedented to use a heterologous comparator virus (YF vaccine) in a regulatory-enabling study. This approach may have value in future studies of other novel viral vectors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269911PMC
http://dx.doi.org/10.1371/journal.ppat.1010658DOI Listing

Publication Analysis

Top Keywords

adult hamsters
12
vaccine
9
recombinant vesicular
8
vesicular stomatitis
8
nipah virus
8
safety profile
8
niv
8
ebola vaccine
8
hamsters inoculated
8
rodent models
8

Similar Publications

Challenges in establishing small animal models for : Host specificity and resistance to infection in rodent hosts.

MicroPubl Biol

December 2024

Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, Washington, D.C., United States.

This study explores potential small animal models for the dog hookworm, , a parasitic nematode which has repeatedly exhibited the ability to develop resistance to a range of anthelmintics. Immunomodulated hamsters, gerbils, rats, and mice were infected with Despite varying degrees of immunosuppression, and in some cases, total adaptive immunodeficiency, no adult worms were recovered, and larval arrest (L3 stage) occurred in muscle tissue of mice and hamsters. This highlights the strict host specificity of and emphasizes the challenges of developing rodent models usable for anthelmintic testing with a strict specialist parasite.

View Article and Find Full Text PDF

Artocarpus lakoocha agglutinin (ALA), which specifically targets the Gal/GalNAc components of complex glycans, was isolated from the seeds of Artocarpus lakoocha. This study is the first to explore the role of ALA in identifying aberrant glycans, designated ALA-binding glycans (ALAG), and its implications in cholangiocarcinoma (CCA). ALA-histochemistry was used to evaluate ALAG expression in liver fluke-induced CCA tissues from hamsters (n = 60).

View Article and Find Full Text PDF

SARS-CoV-2 mRNA vaccines induce robust and persistent germinal centre (GC) B cell responses in humans. It remains unclear how the continuous evolution of the virus impacts the breadth of the induced GC B cell response. Using ultrasound-guided fine needle aspiration, we examined draining lymph nodes of nine healthy adults following bivalent booster immunization.

View Article and Find Full Text PDF

Bisphenol A induces sex-dependent alterations in the neuroendocrine response of Djungarian hamsters to photoperiod.

Chemosphere

December 2024

Centre National de La Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 Allée Du Général Rouvillois, 67000, Strasbourg, France. Electronic address:

In nature, species synchronize reproduction and energy metabolism with seasons to optimize survival and growth. This study investigates the effect of oral exposure to bisphenol A (BPA) on phenotypic and neuroendocrine seasonal adaptations in the Djungarian hamster, which in contrast to conventional laboratory rodents, is a well-recognized seasonal model. Adult female and male hamsters were orally exposed to BPA (5, 50, or 500 μg/kg/d) or vehicle during a 10-week transition from a long (LP) to short (SP) photoperiod (winter transition) or vice versa (summer transition).

View Article and Find Full Text PDF
Article Synopsis
  • Extracellular vesicles (EVs) from virus-infected cells could aid in vaccine development by encapsulating viral peptides and indicating tissue changes in infections.
  • Blood samples from severe COVID-19 patients, mild cases, and uninfected healthcare workers were collected to analyze the molecular characteristics of EVs and identify suitable vaccine peptides.
  • Despite the expectation to find viral peptides, the proteomic analysis revealed no such findings, but highlighted a diverse EV cargo linked to inflammation and viral replication, suggesting EVs play a significant role in COVID-19 pathology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!