The thiazide-sensitive Na-Cl cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian distal convoluted tubule, and the inhibition of its function with thiazides is widely used for the treatment of arterial hypertension. In mammals and teleosts, NCC is present as one ortholog that is mainly expressed in the kidney. One exception, however, is the eel, which has two genes encoding NCC. The eNCCα is located in the kidney and eNCCβ, which is present in the apical membrane of the rectum. Interestingly, the European eNCCβ functions as a Na-Cl cotransporter that is nevertheless resistant to thiazides and is not activated by low-chloride hypotonic stress. However, in the Japanese eel rectal sac, a thiazide-sensitive NaCl transport mechanism has been described. The protein sequences between eNCCβ and jNCCβ are 98% identical. Here, by site-directed mutagenesis, we transformed eNCCβ into jNCCβ. Our data showed that jNCCβ, similar to eNCCβ, is resistant to thiazides. In addition, both NCCβ proteins have high transport capacity with respect to their renal NCC orthologs and, in contrast to known NCCs, exhibit electrogenic properties that are reduced when residue I172 is substituted by A, G, or M. This is considered a key residue for the chloride ion-binding sites of NKCC and KCC. We conclude that NCCβ proteins are not sensitive to thiazides and have electrogenic properties dependent on Cl, and site I172 is important for the function of NCCβ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359660 | PMC |
http://dx.doi.org/10.1152/ajpcell.00213.2022 | DOI Listing |
Front Microbiol
October 2024
Fisheries College, Jimei University, Xiamen, Fujian, China.
In recent years, the use of fish-derived probiotics in aquaculture has become more widespread. However, research on -derived probiotics is still limited. To evaluate the potential of probiotics for disease control in eel aquaculture, isolates were obtained from the intestinal tract of healthy .
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
October 2023
Fisheries Technology Institute Minamiizu Field Station, Japan Fisheries Research and Education Agency, 183-2 Irouzaki, Minamiizu, Kamo, Shizuoka 415-0156, Japan. Electronic address:
Pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), control oogenesis in all vertebrates. In particular, Lh plays a key role in stimulating the final oocyte maturation and subsequent ovulation. The biosynthesis and secretion of Lh are regulated by several neurohormones, including gonadotropin-releasing hormone (GnRH) and dopamine.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Biology, California State University, Fresno, USA.
Dev Reprod
September 2024
Department of Aquatic Life Medical Sciences, Sunmoon University, Asan 31460, Korea.
Artificial sexual maturation of eel () involves rearing in seawater and injecting salmon pituitary extract (SPE). The salinity of seawater and components of SPE influence hormonal activities of the eel pituitary, leading to gonad development. This study investigated the direct effects of salinity change and SPE treatment on the eel pituitary gland using primary cell cultures.
View Article and Find Full Text PDFJ Fish Biol
October 2024
Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, Taiwan.
The European and Japanese eel populations have declined significantly in recent decades. To effectively manage and conserve them, gaining a better understanding of their migratory life cycles is important. Previous research on the spawning ecology and larval dispersal of European and Japanese eels has led to many significant discoveries and advancements for their migratory life cycles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!