AI Article Synopsis

  • Cadmium pollution in agricultural soils causes oxidative stress in plants, limiting agricultural productivity.
  • An endophytic bacterium strain called Stenotrophomonas maltophilia was isolated from common bean roots and demonstrated tolerance and the ability to adsorb cadmium (Cd).
  • Inoculating safflower seeds with this strain improved antioxidant defense in plants under Cd stress, enhancing levels of beneficial compounds and enzyme activities that combat oxidative stress, suggesting its potential use in Cd-contaminated fields.

Article Abstract

Cadmium (Cd) pollution in agricultural soils induces oxidative stress in plants that in turn is the foremost limiting factor for agricultural productivity. In past few decades, plant-metal-microbe interaction is of great interest as an emerging environmentally friendly technology that can be exploited to alleviate metal stress in plants. Considering these, in the present study an endophytic bacterium strain EPS has been isolated from the roots of common bean. The present strain was identified as Stenotrophomonas maltophilia based on 16S rRNA gene sequence. The strain showed Cd tolerance and Cd-adsorption potentials. The inoculation of strain EPS in safflower seeds significantly enhanced the antioxidant defense of plants under Cd-stress conditions through increasing the levels of antioxidant molecules like phenolics, flavonoids and carotenoids as well as improving the activities of the antioxidative enzymes including guaiacol peroxidase (POX), ascorbate peroxidase (APX) and superoxide dismutase (SOD). The output of this study is that strain EPS inoculation mitigates Cd-induced oxidative stress and consequently it may be beneficial, especially in Cd-contaminated crop fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9237008PMC
http://dx.doi.org/10.1007/s00203-022-03049-8DOI Listing

Publication Analysis

Top Keywords

strain eps
12
stenotrophomonas maltophilia
8
antioxidant defense
8
oxidative stress
8
stress plants
8
strain
5
endophyte stenotrophomonas
4
eps
4
maltophilia eps
4
eps modulates
4

Similar Publications

Bacterial strains that are genetically engineered to constitutively produce fluorescent proteins have aided our study of bacterial physiology, biofilm formation, and interspecies interactions. Here, we report on the construction and utilization of new strains that produce the blue fluorescent protein mTagBFP2, the green fluorescent protein sfGFP, and the red fluorescent protein mScarlet-I3 in species , and . Gene fragments, developed to contain the constitutive promoter P , the fluorescent gene of interest as well as , providing resistance to the antibiotic spectinomycin, were inserted into selected open reading frames on the chromosome that were both transcriptionally silent and whose loss caused no measurable changes in fitness.

View Article and Find Full Text PDF

Antibiotics are central to managing airway infections in cystic fibrosis (CF), yet current treatments often fail due to the presence of biofilms, settling down the need for seeking therapies targeting biofilms. This study aimed to investigate the antibiofilm activity of aspartic acid and its potential as an adjuvant to tobramycin against biofilms formed by mucoid and small colony variant (SCV) tobramycin tolerant strain. We assessed the effect of aspartic acid on both surface-attached and suspended biofilms within CF artificial mucus and investigated the synergistic impact of combining it with non-lethal tobramycin concentrations.

View Article and Find Full Text PDF

Sphingan is a crucial exopolysaccharide (EPS) produced by genus bacteria with wide-ranging applications in fields such as food, medicine, and petroleum. In this study, a novel sphingan, named MT gum, was overproduced from the wild-type strain sp. MT01 at a yield of 25.

View Article and Find Full Text PDF

Starch foam has attracted significant attention as an alternative to expanded styrene (EPS) foam owing to its abundance and biodegradability. Despite these merits, its limited thermal insulation and flexibility compared to EPS have hindered its utilization in packaging. Herein, we report the effect of blending with starch/PBAT on foaming behavior and physical properties during foaming processing.

View Article and Find Full Text PDF

Biofilm Formation, Modulation, and Transcriptomic Regulation Under Stress Conditions in sp.

Int J Mol Sci

January 2025

Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.

In nature, bacteria often form heterogeneous communities enclosed in a complex matrix known as biofilms. This extracellular matrix, produced by the microorganisms themselves, serves as the first barrier between the cells and the environment. It is composed mainly of water, extracellular polymeric substances (EPS), lipids, proteins, and DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!