A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of the mushroom volatile 1-octen-3-ol to suppress a morel disease caused by Paecilomyces penicillatus. | LitMetric

Application of the mushroom volatile 1-octen-3-ol to suppress a morel disease caused by Paecilomyces penicillatus.

Appl Microbiol Biotechnol

National-Local Joint Engineering Laboratory of Breeding and Cultivation of Edible and Medicinal Fungi, Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, China.

Published: June 2022

Morels (Morchella spp.) are of great economic and scientific value. Paecilomyces penicillatus can cause white mold disease (WMD) widely emerging on morel ascocarps and is also a potential factor causing morel fructification failure. 1-octen-3-ol is a mushroom volatile compound with broad-spectrum antimicrobial activities. This study aimed to control the morel disease caused by P. penicillatus through suppressing P. penicillatus in the soil cultivated with Morchella sextelata using 1-octen-3-ol. Safe concentration of 1-octen-3-ol was estimated by comparing its inhibitory effect against P. penicillatus and M. sextelata, respectively, with mycelium-growth experiments on agar plates. The results showed that M. sextelata possesses a higher tolerance to 1-octen-3-ol than P. penicillatus with a 1-octen-3-ol concentration between 0 and 200 µL/L. Based on that, a sandy soil was supplemented with low (50 µL/L) or high concentration (200 µL/L) of 1-octen-3-ol. The effects of 1-octen-3-ol on soil microbial communities, WMD incidence, and morel yield were investigated. Compared to the non-supplemented control group, the incidence of WMD and the proportion of Paecilomyces in the soils of low- and high-concentration treatment groups were significantly decreased, corresponding to a significant increase in morel ascocarp yield. It suggests that 1-octen-3-ol effectively suppressed P. penicillatus in the soil, thereby reducing the severity of WMD and improving the morel yield. The diversity of soil bacterial communities was also altered by 1-octen-3-ol supplement. The proportion of Rhodococcus spp. in the soil was positively correlated with the 1-octen-3-ol concentration and ascocarp yield, suggesting its potential role in improving morel yield. KEY POINTS: • A novel method for morel disease suppression was proposed. • Paecilomyces in soil affects white mold disease and fructification yield of morel. • 1-Octen-3-ol suppresses Paecilomyces and alters bacterial community in soil.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-022-12038-2DOI Listing

Publication Analysis

Top Keywords

1-octen-3-ol
12
morel disease
12
morel yield
12
morel
10
mushroom volatile
8
disease caused
8
paecilomyces penicillatus
8
white mold
8
mold disease
8
soil
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!