Type 2 diabetes mellitus is a chronic disease associated with obesity and dysregulated human feeding behavior. The hormone glucagon-like peptide 1 (GLP-1), a critical regulator of body weight, food intake, and blood glucose levels, is secreted by enteroendocrine L-cells. The paucity of L-cells in primary intestinal cell cultures including organoids and monolayers has made assays of GLP-1 secretion from primary human cells challenging. In the current paper, an analytical assay pipeline consisting of an optimized human intestinal tissue construct enriched in L-cells paired with standard antibody-based GLP-1 assays was developed to screen compounds for the development of pharmaceuticals to modulate L-cell signaling. The addition of the serotonin receptor agonist Bimu 8, optimization of R-spondin and Noggin concentrations, and utilization of vasoactive intestinal peptide (VIP) increased the density of L-cells in a primary human colonic epithelial monolayer. Additionally, the incorporation of an air-liquid interface culture format increased the L-cell number so that the signal-to-noise ratio of conventional enzyme-linked immunoassays could be used to monitor GLP-1 secretion in compound screens. To demonstrate the utility of the optimized analytical method, 21 types of beverage sweeteners were screened for their ability to stimulate GLP-1 secretion. Stevioside and cyclamate were found to be the most potent inducers of GLP-1 secretion. This platform enables the quantification of GLP-1 secretion from human primary L-cells and will have broad application in understanding L-cell formation and physiology and will improve the identification of modulators of human feeding behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9337236PMC
http://dx.doi.org/10.1021/acs.analchem.2c00912DOI Listing

Publication Analysis

Top Keywords

glp-1 secretion
24
primary human
12
human intestinal
8
enriched l-cells
8
glp-1
8
human feeding
8
feeding behavior
8
l-cells primary
8
human
7
l-cells
6

Similar Publications

Preclinical development of a standardized extract of Ilex paraguariensis A.St.-Hil for the treatment of obesity and metabolic syndrome.

Pharmacol Res

January 2025

Centro de Inovação e Ensaios Pré-Clínicos. Avenida Luiz Boiteux Piazza, 1302 Cachoeira do Bom Jesus, 88056-000 Florianópolis, Santa Catarina, Brazil. Electronic address:

Obesity is a global epidemic often associated with serious medical complications such as diabetes, hypertension and metabolic dysfunction-associated steatohepatitis. Considering the multifactorial nature of these diseases, medicinal plants could be a valuable therapeutic strategy as their phytoconstituents interact with multiple and relevant biological targets. In this context, Ilex paraguariensis emerges as a potential alternative to treat obesity and associated metabolic diseases since several studies have demonstrated its anti-inflammatory, anti-obesity and anti-diabetic effects.

View Article and Find Full Text PDF

A physiologically-based quantitative systems pharmacology model for mechanistic understanding of the response to alogliptin and its application in patients with renal impairment.

J Pharmacokinet Pharmacodyn

January 2025

Department of Clinical Pharmacy and Pharmacy Administration, West China school of Pharmacy, Sichuan University, Chengdu, 610064, China.

Alogliptin is a highly selective inhibitor of dipeptidyl peptidase-4 and primarily excreted as unchanged drug in the urine, and differences in clinical outcomes in renal impairment patients increase the risk of serious adverse reactions. In this study, we developed a comprehensive physiologically-based quantitative systematic pharmacology model of the alogliptin-glucose control system to predict plasma exposure and use glucose as a clinical endpoint to prospectively understand its therapeutic outcomes with varying renal function. Our model incorporates a PBPK model for alogliptin, DPP-4 activity described by receptor occupancy theory, and the crosstalk and feedback loops for GLP-1-GIP-glucagon, insulin, and glucose.

View Article and Find Full Text PDF

Intestinal distension induced by luminal D-allulose promotes GLP-1 secretion in male rats.

Endocrinology

January 2025

Laboratory of Nutritional Biochemistry, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.

The secretion of glucagon-like peptide-1 (GLP-1) is promoted by various nutrients, and glucose and fructose stimulate GLP-1 secretion via intracellular metabolism. D-Allulose (allulose), a non-metabolizable epimer of D-fructose, is also effective in stimulating GLP-1 secretion, although its underlying mechanism remains unclear. We previously observed intestinal distension after the oral administration of allulose, accompanied by increased GLP-1 secretion in rats, possibly because of the low or slow absorbability of allulose.

View Article and Find Full Text PDF

Once-weekly IcoSema versus once-weekly semaglutide in adults with type 2 diabetes: the COMBINE 2 randomised clinical trial.

Diabetologia

January 2025

Internal Medicine Department, Endocrine Division (SEMPR), Universidade Federal do Paraná, Curitiba, Brazil.

Aims/hypothesis: COMBINE 2 assessed the efficacy and safety of once-weekly IcoSema (a combination therapy of basal insulin icodec and semaglutide) vs once-weekly semaglutide (a glucagon-like peptide-1 analogue) 1.0 mg in individuals with type 2 diabetes inadequately managed with GLP-1 receptor agonist (GLP-1 RA) therapy, with or without additional oral glucose-lowering medications.

Methods: This 52 week, randomised, multicentre, open-label, parallel group, Phase IIIa trial was conducted across 121 sites in 13 countries/regions.

View Article and Find Full Text PDF

ACUTE HYPERGLYCEMIA INDUCES PODOCYTE APOPTOSIS BY MONOCYTE TNF-α RELEASE, A PROCESS ATTENUATED BY VITAMIN D AND GLP-1 RECEPTOR AGONISTS.

J Steroid Biochem Mol Biol

January 2025

Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, VA Medical Center, St. Louis, MO, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA. Electronic address:

Targeting optimal glycemic control based on hemoglobin A1c (A1c) values reduces but does not abolish the onset of diabetic kidney disease and its progression to chronic kidney disease (CKD). This suggests that factors other than the average glucose contribute to the residual risk. Vitamin D deficiency and frequent episodes of acute hyperglycemia (AH) are associated with the onset of albuminuria and CKD progression in diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!