A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Destructive Processing of Silicon Carbide Grains: Experimental Insights into the Formation of Interstellar Fullerenes and Carbon Nanotubes. | LitMetric

The detection of the fullerenes C and C in the interstellar medium (ISM) has transformed our understanding of chemical complexity in space. These discoveries also raise the possibility for the presence of even larger molecules in astrophysical environments. Here we report in situ heating of analog silicon carbide (SiC) presolar grains using transmission electron microscopy (TEM). These heating experiments are designed to simulate the temperature conditions occurring in post-AGB stellar envelopes. Our experimental findings reveal that heating the analog SiC grains to the point of decomposition initially yields hemispherical C-sized nanostructures, with five- and six-membered rings, which transform into multiwalled carbon nanotubes (MWCNTs) if held isothermally >2 min. These MWCNTs are certainly larger than any of the currently observed interstellar fullerene species, both in overall size and number of C atoms. These experimental simulations suggest that such MWCNTs are likely to form in post-AGB circumstellar material, where the structures, along with the smaller fullerenes, are subsequently injected into the ISM.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.2c01441DOI Listing

Publication Analysis

Top Keywords

silicon carbide
8
carbon nanotubes
8
heating analog
8
destructive processing
4
processing silicon
4
carbide grains
4
grains experimental
4
experimental insights
4
insights formation
4
formation interstellar
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!