A new direct band gap Si-Ge allotrope with advanced electronic and optical properties.

Phys Chem Chem Phys

Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China.

Published: July 2022

Direct-band silicon materials have been a sought-after material for potential applications in silicon photonics and solar cells. Accordingly, methodologies like nanostructure engineering, alloy engineering and strain engineering have been developed. In this work, the particle swarm optimization (PSO) algorithm is used to design direct-band Si-Ge alloys. The findings of phonon computations demonstrate that all these structures are dynamically stable. In addition, molecular dynamics and elastic constant calculations are carried out, with results indicating these structures are thermodynamically stable at 300 K, as well as being mechanically stable. All of these materials exhibit semiconductor behavior with band gaps of 1.03, 0.68 and 1.37 eV for α, β and γ phases, respectively, at the HSE06 level. The results of effective mass and mobility of carriers that are important in applications show that holes are more easily transported in all structures, with higher concentration of holes accompanied by lower carrier mobility. Different concentrations of holes lead to different limits in the scattering process. When is lower than the value of around 10 cm, deformation potential scattering is dominant, while the ionized impurity scattering process limits overall mobility when is higher than such a value. Finally, the absorption spectra shows that both α and β phases have isotropic optical properties in the - and -directions while strong anisotropy can be seen in the -direction. However, the γ phase exhibits no notable isotropy. This investigation finds three direct-band and potentially CMOS compatible materials, a finding which will benefit the development of high efficiency emitters or solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp01400aDOI Listing

Publication Analysis

Top Keywords

optical properties
8
solar cells
8
scattering process
8
direct band
4
band gap
4
gap si-ge
4
si-ge allotrope
4
allotrope advanced
4
advanced electronic
4
electronic optical
4

Similar Publications

Dynamic X-ray Microtomography vs. Laser-Doppler Vibrometry: A Comparative Study.

J Assoc Res Otolaryngol

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010, Freiburgstrasse, Bern, Switzerland.

Purpose: There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV).

Methods: We examined three fresh-frozen temporal bones (TB), two donated by white males and one by a Black female, using dynamic synchrotron-based X-ray microtomography for 256 and 512 Hz, stimulated at 110 dB and 120 dB sound pressure level (SPL).

View Article and Find Full Text PDF

Statement Of Problem: Infrared radiation heating (IRH) technology has been innovatively applied to the annealing of selective laser melted (SLM) cobalt chromium (Co-Cr) frameworks. However, previous studies have not reported the effects of IRH on the warping deformation and mechanical properties of these frameworks.

Purpose: The purpose of this in vitro study was to investigate the effects of IRH on the warping deformation and mechanical properties of dental SLM Co-Cr alloy and to evaluate its potential applications in dental restorations.

View Article and Find Full Text PDF

Objectives: To characterize two experimental zirconia bilayer materials compared to their monolithic controls, before and after hydrothermal aging.

Methods: Commercial zirconia powders were utilized to fabricate two bilayer materials: 3Y-TZP+ 5Y-PSZ (3Y+5Y/BI) and 4Y-PSZ+ 5Y-PSZ (4Y+5Y/BI), alongside control groups 3Y-TZP (3Y/C), 4Y-PSZ (4Y/C), and 5Y-PSZ (5Y/C). Compacted specimens were sintered (1550 °C- 2 h, 3 °C/min), and half of them underwent hydrothermal aging (134 °C-20h, 2.

View Article and Find Full Text PDF

Development of fluorescent-photothermal probe based on photoinduced energy transfer: A dual-readout immunosensor for the detection of illegal additive.

Biosens Bioelectron

January 2025

Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China. Electronic address:

The development of advanced optical probes for point-of-care testing holds great importance in the field of diagnostic technologies. This study focused on the synthesis of a probe featuring both fluorescent and photothermal responses with single excitation wavelength, which was achieved through the combination of oxidized camellia oleifera shell powder (OC) and Prussian blue nanoparticles (PBNPs). Notably, OC derived from the direct processing of raw material showed fluorescent and phosphorescent emissions simultaneously, and the positions of the two peaks overlapped with the absorbance range of PBNPs, making the fluorescent and phosphorescent emissions of OC effectively quenched by PBNPs.

View Article and Find Full Text PDF

This study aimed to investigate the impact of adding aroeira leaf extract (Schinus terebinthifolius Raddi) to a yam starch film matrix, focusing on the development of potentially active films and the evaluation of their physicochemical, mechanical, optical, and antioxidant properties. Films were produced using the casting method with varying extract concentrations (0, 3, 6, 12, and 15 %), yam starch (2 %), and glycerol (1 %). The antioxidant properties were analyzed by determining the total phenolic content, 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) radical scavenging, ferric reducing power, and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical elimination, which revealed a significant increase in antioxidant properties as the extract concentration increased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!