Blood-brain barrier (BBB) impairment is an early prevalent feature of multiple sclerosis (MS), and remains vital for MS progression. Microglial activation precedes BBB disruption and cellular infiltrates in the brain of MS patients. However, little is known about the function of microglia in BBB impairment. Here, microglia acts as an important modulator of BBB integrity in inflammatory demyelination. Microglial depletion profoundly ameliorates BBB impairment in experimental autoimmune encephalomyelitis (EAE). Specifically, miR-126a-5p in microglia is positively correlated with BBB integrity in four types of MS plaques. Mechanistically, microglial deletion of miR-126a-5p exacerbates BBB leakage and EAE severity. The protective effect of miR-126a-5p is mimicked and restored by specific inhibition of MMP9 in microglia. Importantly, Auranofin, an FDA-approved drug, is identified to protect BBB integrity and mitigate EAE progression via a microglial miR-126a-5p dependent mechanism. Taken together, microglia can be manipulated to protect BBB integrity and ameliorate inflammatory demyelination. Targeting microglia to regulate BBB permeability merits consideration in therapeutic interventions in MS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403646PMC
http://dx.doi.org/10.1002/advs.202105442DOI Listing

Publication Analysis

Top Keywords

bbb integrity
16
inflammatory demyelination
12
bbb impairment
12
bbb
10
microglia regulate
8
blood-brain barrier
8
progression microglial
8
protect bbb
8
microglia
7
integrity
5

Similar Publications

Alzheimer's disease (AD), the leading cause of dementia, significantly impacts global public health, with cases expected to exceed 150 million by 2050. Late-onset Alzheimer's disease (LOAD), predominantly influenced by the APOE-ε4 allele, exhibits complex pathogenesis involving amyloid-β (Aβ) plaques, neurofibrillary tangles (NFTs), neuroinflammation, and blood-brain barrier (BBB) disruption. Proteomics has emerged as a pivotal technology in uncovering molecular mechanisms and identifying biomarkers for early diagnosis and intervention in AD.

View Article and Find Full Text PDF

Cadmium-induced iron dysregulation contributes to functional impairment in brain endothelial cells via the ferroptosis pathway.

Toxicol Appl Pharmacol

January 2025

College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea. Electronic address:

Cadmium (Cd) is a heavy metal that is a major hazardous environmental contaminant, ubiquitously present in the environment. Cd exposure has been closely associated with an increased prevalence and severity of neurological and cardiovascular diseases (CVD). The blood-brain barrier (BBB) plays a crucial role in protecting the brain from external environmental factors.

View Article and Find Full Text PDF

Xixin Decoction's novel mechanism for alleviating Alzheimer's disease cognitive dysfunction by modulating amyloid-β transport across the blood-brain barrier to reduce neuroinflammation.

Front Pharmacol

January 2025

Key Research Laboratory for Prevention and Treatment of Cerebrospinal diseases, Shaanxi Provincial Administration of Traditional Chinese Medicine, Xianyang, China.

Purpose: Xixin Decoction (XXD) is a classical formula that has been used to effectively treat dementia for over 300 years. Modern clinical studies have demonstrated its significant therapeutic effects in treating Alzheimer's disease (AD) without notable adverse reactions. Nevertheless, the specific mechanisms underlying its efficacy remain to be elucidated.

View Article and Find Full Text PDF

RhoA/ROCK2 signaling pathway regulates Mn-induced alterations in tight junction proteins leading to cognitive dysfunction in mice.

Curr Res Toxicol

December 2024

Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Chang Le Xi Road, Xi'an,Shaanxi 710032, China.

Elevated manganese (Mn) exposure has been implicated in a broad spectrum of neurological disorders, including motor dysfunction and cognitive deficits. Previous studies have demonstrated that Mn induces neurotoxicity by disrupting the integrity of the blood-brain barrier (BBB), a critical regulator in maintaining central nervous system homeostasis and a contributing factor in the pathogenesis of numerous neurological disorders. However, the precise molecular mechanisms underlying Mn-induced BBB disruption and its role in facilitating neurotoxicity remain incompletely understood.

View Article and Find Full Text PDF

This review explores the intricate connections between Drosophila models and the human blood-brain barrier (BBB) with nanoparticle-based approaches for neurological treatment. Drosophila serves as a powerful model organism due to its evolutionary conservation of key biological processes, particularly in the context of the BBB, which is formed by glial cells that share structural and functional similarities with mammalian endothelial cells. Recent advancements in nanoparticle technology have highlighted their potential for effective drug delivery across the BBB, utilizing mechanisms such as passive diffusion, receptor-mediated transcytosis, and carrier-mediated transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!