Analysis of Pleurotin binding to human thioredoxin reductase using docking and molecular dynamics simulation.

J Biomol Struct Dyn

NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil.

Published: July 2023

Thioredoxin reductase (TrxR) has been considered a potential target for cancer chemotherapy. It acts by controlling the redox homeostasis of human cells and, therefore, interfering in its function may trigger apoptosis, which is a crucial tumor suppression mechanism. Despite the great effort in the search for TrxR inhibitors, none was approved for human therapy. In the present study a virtual screening for natural organic compounds is discussed for a set of 72 compounds with known IC-50 for TrxR inhibition. The results suggest the Pleurotin, a naphthoquinone obtained from fungus, as a potential TrxR inhibitor, which acts by binding to the active site of the enzyme, between the N- and C-terminal domains. The presence of the ligand blocks the approximation of the C-terminal arm to the N-terminal, which is an essential step of the enzyme function. Besides, the two equivalent binding sites of TrxR were explored, by docking two ligands simultaneously. The results indicate that both sites have an allosteric correlation and, the presence of the ligand in one site may interfere, or even prevent, the binding of the second ligand at the other site. All these findings are quantitatively discussed based on the analysis of long molecular dynamics trajectories, which provides a full description of the ligand-receptor binding modes, average binding energies and conformational changes.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2022.2092553DOI Listing

Publication Analysis

Top Keywords

thioredoxin reductase
8
molecular dynamics
8
presence ligand
8
ligand site
8
binding
6
trxr
5
analysis pleurotin
4
pleurotin binding
4
binding human
4
human thioredoxin
4

Similar Publications

Rampant phospholipid peroxidation initiated by iron causes ferroptosis unless this is restrained by cellular defences. Ferroptosis is increasingly implicated in a host of diseases, and unlike other cell death programs the physiological initiation of ferroptosis is conceived to occur not by an endogenous executioner, but by the withdrawal of cellular guardians that otherwise constantly oppose ferroptosis induction. Here, we profile key ferroptotic defence strategies including iron regulation, phospholipid modulation and enzymes and metabolite systems: glutathione reductase (GR), Ferroptosis suppressor protein 1 (FSP1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), Dihydrofolate reductase (DHFR), retinal reductases and retinal dehydrogenases (RDH) and thioredoxin reductases (TR).

View Article and Find Full Text PDF

Amoebic liver abscess (ALA), a common tropical infection, is caused by (EH). For decades, the first-line treatment for ALA has been metronidazole which has several drawbacks. The thioredoxin reductase enzyme in EH is essential for its anti-oxidative defence and survival during tissue invasion.

View Article and Find Full Text PDF

Sulforaphane potentiates the efficacy of chemoradiotherapy in glioblastoma by selectively targeting thioredoxin reductase 1.

Cancer Lett

December 2024

Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China. Electronic address:

Chemoradiotherapy is a conventional treatment modality for patients with glioblastoma (GBM). However, the efficacy of this approach is significantly hindered by the development of therapeutic resistance. The thioredoxin system, which plays a crucial role in maintaining redox homeostasis, confers protection to cancer cells against apoptosis induced by chemoradiotherapy.

View Article and Find Full Text PDF

Disulfidptosis is a recently identified form of cell death characterized by the aberrant accumulation of cellular disulfides. This process primarily occurs in glucose-starved cells expressing higher levels of SLC7A11 and has been proposed as a therapeutic strategy for cancers with hyperactive SCL7A11. However, the potential for inducing disulfidptosis through other mechanisms in cancers remains unclear.

View Article and Find Full Text PDF

Staphylococcus warneri is a gram-positive mesophilic bacterium, resilient to extreme environmental conditions. To unravel its Osmotic Tolerance Response (OTR), we conducted proteomic and metabolomic analyses under drought (PEG) and salt (NaCl) stresses. Our findings revealed 1340 differentially expressed proteins (DEPs) across all treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!