Efficient quantitative assays for measurement of viral replication and infectivity are indispensable for future endeavors to develop prophylactic or therapeutic antiviral drugs or vaccines against SARS-CoV-2. We developed a SARS-CoV-2 cell-cell transmission assay that provides a rapid and quantitative readout to assess SARS-CoV-2 spike hACE2 interaction in the absence of pseudotyped particles or live virus. We established two well-behaved stable cell lines, which demonstrated a remarkable correlation with standard cell-free viral pseudotyping for inhibition by convalescent sera, small-molecule drugs, and murine anti-spike monoclonal antibodies. The assay is rapid, reliable, and highly reproducible, without a requirement for any specialized research reagents or laboratory equipment and should be easy to adapt for use in most investigative and clinical settings. It can be effectively used or modified for high-throughput screening for compounds and biologics that interfere with virus-cell binding and entry to complement other neutralization assays currently in use.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213030 | PMC |
http://dx.doi.org/10.1016/j.crmeth.2022.100252 | DOI Listing |
BMC Pharmacol Toxicol
January 2025
Medical Surgical Nursing, Department of Nursing, School of Nursing and Midwifery, Iranshahr University of Medical Sciences, Iranshahr, Iran.
Background: The global dissemination of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) poses a critical threat to public health. However, comprehensive data on the prevalence and resistance rates of CR-hvKp are limited. This systematic review and meta-analysis aim to estimate the pooled prevalence of carbapenem resistance among hvKp strains and assess the distribution of carbapenemase genes.
View Article and Find Full Text PDFItal J Pediatr
January 2025
Department of Pediatrics, IRCCS Policlinico San Matteo Foundation, Viale Golgi 19, Pavia, 27100, Italy.
Background: Chronic Nonbacterial Osteomyelitis (CNO) is a rare auto-inflammatory disease that mainly affects children, and manifests with single or multiple painful bone lesions. Due to the lack of specific laboratory markers, CNO diagnosis is a matter of exclusion from different conditions, first and foremost bacterial osteomyelitis and malignancies. Whole Body Magnetic Resonance (WBMR) and bone biopsy are the gold standard for the diagnosis.
View Article and Find Full Text PDFVirol J
January 2025
Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
Background: Vibrio parahaemolyticus is a marine bacterium causing seafood-associated gastrointestinal illness in humans and acute hepatopancreatic necrosis disease (AHPND) in shrimp. Bacteriophages have emerged as promising biocontrol agents against V. parahaemolyticus.
View Article and Find Full Text PDFBMC Genomics
January 2025
Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
Background: The burden of Clostridioides difficile as a nosocomial- and community-acquired pathogen has been increasing over the recent decades, including reports of severe outbreaks. Molecular and virulence genotyping are central for the epidemiological surveillance of this pathogen, but need to balance accuracy and rapid turnaround time of the results. While Illumina short-read sequencing has been adopted as the gold standard to investigate C.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
Critical to the success of CRISPR-based diagnostic assays is the selection of a diagnostic target highly specific to the organism of interest, a process often requiring iterative cycles of manual selection, optimisation, and redesign. Here we present PathoGD, a bioinformatic pipeline for rapid and high-throughput design of RPA primers and gRNAs for CRISPR-Cas12a-based pathogen detection. PathoGD is fully automated, leverages publicly available sequences and is scalable to large datasets, allowing rapid continuous monitoring and validation of primer/gRNA sets to ensure ongoing assay relevance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!