Metal organic frameworks (MOFs) are a promising choice for antibacterial and antifungal activity due to their composition, unique architecture, and larger surface area. Herein, the ultrasonic method was used to synthesize the Cu/Zn-MOF material as an effective hybrid nanostructure with ideal properties. SEM images were used to investigate the product's morphology and particle size distribution. The XRD pattern revealed that the Cu/Zn hybrid MOF nanostructures had a smaller crystalline size distribution than pure Cu and Zn-MOF samples. Furthermore, the BET technique determined that the hybrid MOF nanostructures had a high specific surface area. TG analysis revealed that the hybrid MOF structures were more thermally stable than pure samples. The final product, with remarkable properties, was used as a new option in the field of antibacterial studies. Antibacterial activity was assessed using MIC and MBC against Gram negative and Gram positive strains, as well as antifungal activity using MIC and MFC. The antimicrobial properties of the synthesized Cu/Zn hybrid MOF nanostructures revealed that they were more effective than commercial drugs in some cases. This study's protocol could be a new strategy for introducing new hybrid nanostructures with specific applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214199 | PMC |
http://dx.doi.org/10.3389/fbioe.2022.861580 | DOI Listing |
Anal Chem
January 2025
State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control of Jiangsu Province, Jiangnan University, Wuxi 214122, China.
Metal-organic framework-based hybrids (MOFzyme) have promising applications in colorimetric aptasensors due to their highly efficient and stable catalytic activity. However, their efficient application in biosensors remains a challenging issue due to the limited reaction site and amorphous structure. Herein, we encapsulated catalase inside MOF cavities to prepare an MOFzyme with many functional groups on its surface, and the functional groups were utilized for the subsequent integration of MOFzyme into the hyaluronic acid-DNA hydrogel.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China. Electronic address:
A ratiometric electrochemical aptasensor was developed for ultra-sensitive detection of cortisol using aptamer (Apt) as recognition element, methylene blue (MB) as signal probe, and zirconium metal-organic framework (Zr-MOF) as carrier loaded with abundant MB for signal amplification. The carboxylated multi-walled carbon nanotubes (cMWCNTs)-modified Au electrode showed excellent electrochemical performance to immobilize complementary DNA (cDNA) for hybridizing with MB@Zr-MOF-Apt via amide bonds. In the presence of cortisol, it would compete with cDNA for binding the Apt, resulting in the detachment of MB@Zr-MOF-Apt complex from the electrode surface, and the electrochemical signal of MB was decreased, while that of [Fe(CN)] was basically unchanged.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.
Efficient room-temperature sensors for toxic gases are essential to ensure a safe and healthy life. Conducting frameworks have shown great promise in advancing gas sensing technologies. In this study, two new organic-inorganic frameworks [CuX(PPh)(L)], CP1 (X = I) and CP2 (X = Br) have been synthesized using (pyridin-4-yl)-N-(4H-1,2,4-triazol-4-yl)methanimine (L) and triphenylphosphine.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Life Science, Hebei University, Innovation Center for Bioengineering and Biotechnology of Hebei Province, Baoding 071002, China. Electronic address:
Nowadays, metal-organic frameworks (MOFs) have been emerged as an efficient platform for enzyme immobilization due to their high porosity, tunability, and chemical versatility. In this study, a series of hybrid lipase@NKMOF-101-M (M = Mg, Mn, Zn, Co, or Ni) biocatalysts were constructed through a facile in situ encapsulation method, and the encapsulation and immobilization of lipase in MOFs were carefully validated. The catalytic activity of lipase@NKMOF-101-Mn was 2-fold higher than that of lipase@ZIF-8 and 3-fold higher than that of lipase@MCM-41 due to its excellent dispersibility and hydrophobicity in hexane.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Engineering, Multimedia University-MMU, 63100 Cyberjaya, Cyberjaya, Malaysia.
This study aims to establish a thyristor-controlled series compensator (TCSC) equipped with a proportional integral derivative with filter (PIDF) controller by using a futuristic optimisation technique called evolutionary programming sine cosine algorithm (EPSCA) with multiobjective function (MOF). EPSCA is developed by merging evolutionary programming and the sine cosine algorithm. Three stability indicators, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!