Accurate Adiabatic and Diabatic Potential Energy Surfaces for the Reaction of He + H.

Biomed Res Int

Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, China.

Published: June 2022

The accurate adiabatic and diabatic potential energy surfaces, which are for the two lowest states of He + H, are presented in this study. The Molpro 2012 software package is used, and the large basis sets (aug-cc-pV5Z) are selected. The high-level MCSCF/MRCI method is employed to calculate the adiabatic potential energy points of the title reaction system. The triatomic reaction system is described by Jacobi coordinates, and the adiabatic potential energy surfaces are fitted accurately using the B-spline method. The equilibrium structures and electronic energies for the H are provided, and the corresponding different levels of vibrational energies of the ground state are deduced. To better express the diabatic process of the whole reaction, avoid crossing points being calculated and conical intersection also being optimized. Meanwhile, the diabatic potential energy surfaces of the reaction process are constructed. This study will be helpful for the analysis of histopathology and for the study in biological and medical mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9225863PMC
http://dx.doi.org/10.1155/2022/7552881DOI Listing

Publication Analysis

Top Keywords

potential energy
20
energy surfaces
16
diabatic potential
12
accurate adiabatic
8
adiabatic diabatic
8
surfaces reaction
8
adiabatic potential
8
reaction system
8
potential
5
energy
5

Similar Publications

-β, β-β' trifused porphyrins incorporating two distinct active methylene groups (MN = malononitrile and IND = 1,3-indanedione) and their corresponding metal complexes with Cu(II) and Zn(II) have been synthesized with good to excellent yields and characterized by various spectroscopic techniques and spectrometric methods. Single crystal X-ray analysis of the Zn(II) complex ZnTFPMB(MN) (where TFP = trifused porphyrin and MB = mono benzo) revealed a nonplanar 'armchair' type conformation with a twist angle of 24.10°.

View Article and Find Full Text PDF

Functional flexible adsorbents and their potential utility.

Chem Commun (Camb)

January 2025

Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94T9PX, Republic of Ireland.

Physisorbents are poised to address global challenges such as CO capture, mitigation of water scarcity and energy-efficient commodity gas storage and separation. Rigid physisorbents, those adsorbents that retain their structures upon gas or vapour exposure, are well studied in this context. Conversely, cooperatively flexible physisorbents undergo long-range structural transformations stimulated by guest exposure.

View Article and Find Full Text PDF

Purpose: This study aimed to validate the accuracy of the Active Style Pro HJA-750C (ASP) in measuring metabolic equivalents (METs) during walking and reaching tasks in individuals with subacute stroke using a respiratory gas analyzer as a reference.

Methods: Twenty-three hospitalized patients with subacute stroke participated in this study. They performed sitting and standing reaching tasks, as well as walking while wearing a VO2 Master respiratory gas analyzer and ASP devices on both the paretic and non-paretic sides.

View Article and Find Full Text PDF

Introduction: Osteosarcoma (OS), a prevalent metastatic cancer among young individuals, is associated with a grim prognosis. Long non-coding RNAs (lncRNAs), including C1QTNF1-AS1, are pivotal regulators of cancer cell proliferation and motility. As an oncogene, C1QTNF1-AS1 is implicated in various tumor types, such as colorectal, pancreatic, hepatocellular carcinomas, and OS.

View Article and Find Full Text PDF

Mitochondrial disease and epilepsy in children.

Front Neurol

January 2025

Department of Pediatric Neurology, Children's Medical Center, First Hospital of Jilin University, Changchun, China.

Mitochondria is the cell's powerhouse. Mitochondrial disease refers to a group of clinically heterogeneous disorders caused by dysfunction in the mitochondrial respiratory chain, often due to mutations in mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) that encodes mitochondrial proteins. This dysfunction can lead to a variety of clinical phenotypes, particularly affecting organs with high energy demands, such as the brain and muscles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!