Mutations in ion channel genes underlie a number of human neurological diseases. Historically, human mutations in ion channel genes, the so-called channelopathies, have been identified to cause episodic disorders. In the last decade, however, mutations in ion channel genes have been demonstrated to result in progressive neurodegenerative and neurodevelopmental disorders in humans, particularly with ion channels that are enriched in the cerebellum. This was unexpected given prior rodent ion channel knock-out models that almost never display neurodegeneration. Human ataxia-causing channelopathies that result in even haploinsufficiency can result in cerebellar atrophy and cerebellar Purkinje neuron loss. Rodent neurons with ion channel loss-of-function appear to, therefore, be significantly more resistant to neurodegeneration compared to human neurons. Fundamental differences in susceptibility of human and rodent cerebellar neurons in ataxia-causing channelopathies must therefore be present. In this review, we explore the properties of human neurons that may contribute to their vulnerability to cerebellar degeneration secondary to ion channel loss-of-function mutations. We present a model taking into account the known allometric scaling of neuronal ion channel density in humans and other mammals that may explain the preferential vulnerability of human cerebellar neurons to degeneration in ataxia-causing channelopathies. We also speculate on the vulnerability of cerebellar neurons to degeneration in mouse models of spinocerebellar ataxia (SCA) where ion channel transcript dysregulation has recently been implicated in disease pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219590PMC
http://dx.doi.org/10.3389/fnsys.2022.908569DOI Listing

Publication Analysis

Top Keywords

ion channel
32
cerebellar neurons
16
ataxia-causing channelopathies
16
neurons degeneration
12
mutations ion
12
channel genes
12
ion
9
vulnerability human
8
human cerebellar
8
degeneration ataxia-causing
8

Similar Publications

Purifying membrane proteins has been the limiting step for studying their structure and function. The challenges of the process include the low expression levels in heterologous systems and the requirement for their biochemical stabilization in solution. The human voltage-gated proton channel (hH1) is a good example of that: the published protocols to express and purify hH1 produce low protein quantities at high costs, which is an issue for systematically characterizing its structure and function.

View Article and Find Full Text PDF

Background: Mounting evidence underline the relevance of macromolecular complexes in cancer. Integrins frequently recruit ion channels and transporters within complexes which behave as signaling hubs. A complex composed by β1 integrin, hERG1 K channel, the neonatal form of the Na channel Na 1.

View Article and Find Full Text PDF

In bioneuronal systems, the synergistic interaction between mechanosensitive piezo channels and neuronal synapses can convert and transmit pressure signals into complex temporal plastic pulses with excitatory and inhibitory features. However, existing artificial tactile neuromorphic systems struggle to replicate the elaborate temporal plasticity observed between excitatory and inhibitory features in biological systems, which is critical for the biomimetic processing and memorizing of tactile information. Here we demonstrate a mechano-gated iontronic piezomemristor with programmable temporal-tactile plasticity.

View Article and Find Full Text PDF

Circadian influences on sudden cardiac death and cardiac electrophysiology.

J Mol Cell Cardiol

January 2025

Department of Physiology, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, University of Kentucky, Lexington, KY, USA. Electronic address:

Cardiologists have analyzed daily patterns in the incidence of sudden cardiac death to identify environmental, behavioral, and physiological factors that trigger fatal arrhythmias. Recent studies have indicated an overall increase in sudden cardiac arrest during daytime hours when the frequency of arrhythmogenic triggers is highest. The risk of fatal arrhythmias arises from the interaction between these triggers-such as elevated sympathetic signaling, catecholamine levels, heart rate, afterload, and platelet aggregation-and the heart's susceptibility (myocardial substrate) to them.

View Article and Find Full Text PDF

TET1 participates in oxaliplatin-induced neuropathic pain by regulating microRNA-30b/Nav1.6.

J Biol Chem

January 2025

Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China; Institute of Neuroscience, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China; School of Nursing and Health, Zhengzhou University, 100 Science venue, Zhengzhou, 450001, China. Electronic address:

Chemotherapy-induced neuropathic pain poses significant clinical challenges and severely impacts patient quality of life. Sodium ion channels are crucial in regulating neuronal excitability and pain. Our research indicates that the microRNA-30b (miR-30b) in rat dorsal root ganglia (DRG) contributes to chemotherapy-induced neuropathic pain by regulating the Nav1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!