Design Approaches and Computational Tools for DNA Nanostructures.

IEEE Open J Nanotechnol

Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea.

Published: October 2021

Designing a structure in nanoscale with desired shape and properties has been enabled by structural DNA nanotechnology. Design strategies in this research field have evolved to interpret various aspects of increasingly more complex nanoscale assembly and to realize molecular-level functionality by exploring static to dynamic characteristics of the target structure. Computational tools have naturally been of significant interest as they are essential to achieve a fine control over both shape and physicochemical properties of the structure. Here, we review the basic design principles of structural DNA nanotechnology together with its computational analysis and design tools.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232119PMC
http://dx.doi.org/10.1109/ojnano.2021.3119913DOI Listing

Publication Analysis

Top Keywords

computational tools
8
structural dna
8
dna nanotechnology
8
design
4
design approaches
4
approaches computational
4
tools dna
4
dna nanostructures
4
nanostructures designing
4
designing structure
4

Similar Publications

The analysis of repetitive hand movements and behavioral transition patterns holds particular significance in detecting atypical behaviors in early child development. Early recognition of these behaviors holds immense promise for timely interventions, which can profoundly impact a child's well-being and future prospects. However, the scarcity of specialized medical professionals and limited facilities has made detecting these behaviors and unique patterns challenging using traditional manual methods.

View Article and Find Full Text PDF

Optimizing voriconazole-loaded thermoresponsive hydrogel: tools and studies.

Drug Dev Ind Pharm

January 2025

Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.

Objective: The present study aims to develop and evaluate the voriconazole-loaded thermoresponsive hydrogel using tools.

Methods: Poloxamer 407 and PEG 400 were selected as the components from studies for thermoresponsive hydrogel of voriconazole. The cohesive energy density (CED) and solubility parameters (SP) were calculated using Biovia Material Studio 2022 software to predict the polymer-polymer miscibility and drug-polymer miscibility.

View Article and Find Full Text PDF

Little is known about the association of social media and belief in alcohol and cancer with binge drinking. This study aimed to perform feature selection and develop machine learning (ML) tools to predict occurrence of binge drinking among adults in the United State. A total of 5,886 adults including 1,252 who ever experienced with binge drinking were selected from the 2022 Health Information National Trends Survey (HINTS 6).

View Article and Find Full Text PDF

Physical anatomical models constructed from medical images are valuable research tools for evaluating patient-specific clinical circumstances. For example, 3D models replicating a patient's internal anatomy in the cardiovascular system can be used to validate Computational Fluid Dynamics (CFD) models, which can then be used to identify potential hemodynamic consequences of surgical decisions by providing insight into how blood and vascular tissue mechanics may contribute to disease progression and post-operative complications. Patient-specific models have been described in the literature; however, rapid prototyping models that achieve anatomical accuracy, optical transparency, and thin-walled compliance in a cost and time-effective approach have proven challenging.

View Article and Find Full Text PDF

Purpose: To assess agreement between CT volumetry change classifications derived from Quantitative Imaging Biomarker Alliance Profile cut-points (ie, QIBA CTvol classifications) and the Response Evaluation Criteria in Solid Tumors (RECIST) categories.

Materials And Methods: Target lesions in lung, liver, and lymph nodes were randomly chosen from patients in 10 historical clinical trials for various cancers, ensuring a balanced representation of lesion types, diameter ranges described in the QIBA Profile, and variations in change magnitudes. Three radiologists independently segmented these lesions at baseline and follow-up scans using 2 software tools.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!