Hepatocellular carcinoma (HCC) is the most common form of liver cancer worldwide. Increasing evidence suggests that mitochondria play a central role in malignant metabolic reprogramming in HCC, which may promote disease progression. To comprehensively evaluate the mitochondrial phenotype present in HCC, we applied a recently developed diagnostic workflow that combines high-resolution respirometry, fluorometry, and mitochondrial-targeted nLC-MS/MS proteomics to cell culture (AML12 and Hepa 1-6 cells) and diethylnitrosamine (DEN)-induced mouse models of HCC. Across both model systems, CI-linked respiration was significantly decreased in HCC compared to nontumor, though this did not alter ATP production rates. Interestingly, CI-linked respiration was found to be restored in DEN-induced tumor mitochondria through acute treatment with P1, P5-di(adenosine-5') pentaphosphate (Ap5A), a broad inhibitor of adenylate kinases. Mass spectrometry-based proteomics revealed that DEN-induced tumor mitochondria had increased expression of adenylate kinase isoform 4 (AK4), which may account for this response to Ap5A. Tumor mitochondria also displayed a reduced ability to retain calcium and generate membrane potential across a physiological span of ATP demand states compared to DEN-treated nontumor or saline-treated liver mitochondria. We validated these findings in flash-frozen human primary HCC samples, which similarly displayed a decrease in mitochondrial respiratory capacity that disproportionately affected CI. Our findings support the utility of mitochondrial phenotyping in identifying novel regulatory mechanisms governing cancer bioenergetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213884PMC
http://dx.doi.org/10.3389/fonc.2022.919880DOI Listing

Publication Analysis

Top Keywords

tumor mitochondria
12
hepatocellular carcinoma
8
adenylate kinase
8
kinase isoform
8
ci-linked respiration
8
den-induced tumor
8
hcc
6
mitochondria
5
bioenergetic phenotyping
4
den-induced
4

Similar Publications

Unlabelled: Quantitative understanding of mitochondrial heterogeneity is necessary for elucidating the precise role of these multifaceted organelles in tumor cell development. We demonstrate an early mechanistic role of mitochondria in initiating neoplasticity by performing quantitative analyses of structure-function of single mitochondrial components coupled with single cell transcriptomics. We demonstrate that the large Hyperfused-Mitochondrial-Networks (HMNs) of keratinocytes promptly get converted to the heterogenous Small-Mitochondrial-Networks (SMNs) as the stem cell enriching dose of the model carcinogen, TCDD, depolarizes mitochondria.

View Article and Find Full Text PDF

Coumarins, a group of naturally occurring compounds, have been reported to demonstrate anticancer potential. These substances, distinguished by their combined benzene and α-pyrone rings, have been demonstrated to impact multiple cellular mechanisms essential for the initiation and advancement of cancer. These agents work in different ways that prevent different tumor cells from growing, spreading, and increasing.

View Article and Find Full Text PDF

Mutations in the mitochondrial (mt) genome contribute to metabolic dysfunction and their accumulation relates to disease progression and resistance development in cancer cells. This study explores the mutational status of the mt genome of cisplatin-resistant -sensitive testicular germ cell tumor (TGCT) cells and explores its association with their respiration parameters, expression of respiratory genes, and preferences for metabolic pathways to reveal new markers of therapy resistance in TGCTs. Using Illumina sequencing with Twist Enrichment Panel, the mutations of mt genomes of sensitive 2102EP, H12.

View Article and Find Full Text PDF

Mitochondria-Targeting Type-I Photodynamic Therapy Based on Phenothiazine for Realizing Enhanced Immunogenic Cancer Cell Death via Mitochondrial Oxidative Stress.

Int J Nanomedicine

January 2025

Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510095, People's Republic of China.

Purpose: Photo-immunotherapy faces challenges from poor immunogenicity and low response rate due to hypoxic microenvironment. This study presents Rh-PTZ, a small organic molecule with a D-π-A structure, that simultaneously amplifies mitochondria-targeted type-I PDT-dependent immune stimulation for the treatment of hypoxic cancer.

Methods: The hydrophobic Rh-PTZ was encapsulated into F127 to prepare Rh-PTZ nanoparticles (Rh-PTZ NPs).

View Article and Find Full Text PDF

Immune Aging in Rheumatoid Arthritis.

Arthritis Rheumatol

January 2025

Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN, 55905, USA.

Rheumatoid arthritis (RA) is a life-long autoimmune disease caused by the confluence of genetic and environmental variables that lead to loss of self-tolerance and persistent joint inflammation. RA occurs at the highest incidence in individuals >65 years old, implicating the aging process in disease susceptibility. Transformative approaches in molecular immunology and in functional genomics have paved the way for pathway paradigms underlying the replacement of immune homeostasis with auto-destructive immunity in affected patients, including the process of immune aging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!