AI Article Synopsis

Article Abstract

Surface-enhanced Raman scattering (SERS) based on chemical mechanism (CM) has great potential for superior stability and selectivity. Moreover, a bioinspired CM-Raman substrate-Raman reporter system with charge separation and electron transport nature provides thylakoid-mimicking potential for multifunctional applications. Herein, hollow carbon nitride nanospheres hierarchically assembled with a well-oriented copper(ii) phthalocyanine layer and hyaluronic acid (HCNs@CuPc@HA) were designed as a light-harvesting nanocomposite and photosynthesis-mimicking nanoscaffold that enhance both CM-SERS and photoredox catalysis. Remarkable SERS enhancement was achieved due to the strengthened short-range substrate-molecule interaction, enriched CuPc molecule loading and enhanced light-mater interactions. Meanwhile, the uniform CuPc molecule film mimics a photo-pigment to accelerate the near infrared (NIR)-oxygen generation and photodynamic catalysis of photosynthetic membrane-like HCNs. The experimental findings were further validated by numerical theory analysis. The greatly enhanced SERS signal and photosynthetic-mimicking properties of the heterostructure (denoted as HCNCHs) were successfully employed for circulating tumor cell (CTC) diagnosis and SERS imaging-guided cancer catalytic therapy in tumor xenograft models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9172571PMC
http://dx.doi.org/10.1039/d2sc01534jDOI Listing

Publication Analysis

Top Keywords

remarkable sers
8
sers enhancement
8
cupc molecule
8
sers
5
bioinspired hollow
4
hollow g-cn-cupc
4
g-cn-cupc heterostructure
4
heterostructure remarkable
4
enhancement photosynthesis-mimicking
4
photosynthesis-mimicking properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!