In order to further improve the detection performance of the wearable heart rate sensor for human physiological and biochemical signals and body kinematics performance, the wearable heart rate sensor module was optimized by using nanofibers. Nanoparticle-doped graphene films were prepared by adding nanoparticles to a graphene oxide solution. The prepared film was placed in toluene, and the nanoparticles were removed to complete the preparation of a graphene film with a porous microstructure. The graphene film and the conductive film together formed a wearable heart rate sensor module. The strain response test of the porous graphene film wearable heart rate sensor module verifies the validity of the research in this paper. The resistance change of the wearable heart rate sensor module based on the PGF-2 film is 8 to 16 times higher than that of the RGO film, and the sensitivity is better, proving that the sensor module designed by this method shows significant application potential in human motion detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9225885 | PMC |
http://dx.doi.org/10.1155/2022/1747822 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!