In this study, a mesoporous SBA-15 silica catalyst was prepared and modified with encased 1% platinum (Pt) metal nanoparticles for the hydrocracking and hydroisomerization of n-heptane in a heterogeneous reaction. The textural and structural characteristics of the nanostructured silica, including both encased and non-encased nanoparticles, were measured using small-angle X-ray diffraction (XRD), nitrogen adsorption-desorption porosimetry, Brunauer-Emmett-Teller (BET) surface area analysis, Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Catalytic testing was carried out in a plug-flow reactor under highly controlled operating conditions involving the reactant flow rate, pressure, and temperature. Gas chromatography was used to analyze the species as they left the reactor. The results demonstrated that 1% Pt/SBA-15 has a high n-heptane conversion activity (approximately 85%). Based on the results of this experimental work, there is no selectivity in the SBA-15 catalysts for isomerization products because they are inactive at the relatively low temperature that is essential for hydroisomerization. On the other hand, the SBA-15 catalysts have a considerable selectivity for products that have cracks, owing to their ability to withstand extremely high temperatures (300-400 ​°C) as well as the availability of Lewis acid sites within the catalyst structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9218147PMC
http://dx.doi.org/10.1016/j.heliyon.2022.e09737DOI Listing

Publication Analysis

Top Keywords

electron microscopy
8
sba-15 catalysts
8
modification sba-15
4
sba-15 mesoporous
4
mesoporous silica
4
silica active
4
active heterogeneous
4
heterogeneous catalyst
4
catalyst hydroisomerization
4
hydroisomerization hydrocracking
4

Similar Publications

Tetrameric PilZ protein stabilizes stator ring in complex flagellar motor and is required for motility in .

Proc Natl Acad Sci U S A

January 2025

Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .

View Article and Find Full Text PDF

The homo-dodecameric ring-shaped RNA binding attenuation protein (TRAP) from binds up to twelve tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the operon mRNA, thereby downregulating biosynthesis of Trp. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity.

View Article and Find Full Text PDF

Structural insight into sodium ion pathway in the bacterial flagellar stator from marine .

Proc Natl Acad Sci U S A

January 2025

Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.

Many bacteria swim in liquid or swarm on surface using the flagellum rotated by a motor driven by specific ion flow. The motor consists of the rotor and stator, and the stator converts the energy of ion flow to mechanical rotation. However, the ion pathway and the mechanism of stator rotation coupled with specific ion flow are still obscure.

View Article and Find Full Text PDF

Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?

Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.

What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.

View Article and Find Full Text PDF

Molecular basis for the stepwise and faithful maturation of the 20 proteasome.

Sci Adv

January 2025

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.

The proteasome degrades most superfluous and damaged proteins, and its decline is associated with many diseases. As the proteolytic unit, the 20 proteasome is assembled from 28 subunits assisted by chaperones PAC1/2/3/4 and POMP; then, it undergoes the maturation process, in which the proteolytic sites are activated and the assembly chaperones are cleared. However, mechanisms governing the maturation remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!