Coastal marine ecosystems are some of the most diverse natural habitats while being highly vulnerable in the face of climate change. The combination of anthropogenic influence from land and ongoing climate change will likely have severe effects on the environment, but the precise response remains uncertain. This study compared an unaffected "control" Baltic Sea bay to a "heated" bay that has undergone artificial warming from cooling water release from a nuclear power plant for ~50 years. This heated the water in a similar degree to IPCC SSP5-8.5 predictions by 2100 as natural systems to study temperature-related climate change effects. Bottom water and surface sediment bacterial communities and their biogeochemical processes were investigated to test how future coastal water warming alters microbial communities; shifts seasonal patterns, such as increased algae blooming; and influences nutrient and energy cycling, including elevated respiration rates. 16S rRNA gene amplicon sequencing and geochemical parameters demonstrated that heated bay bottom water bacterial communities were influenced by increased average temperatures across changing seasons, resulting in an overall Shannon's H diversity loss and shifts in relative abundances. In contrast, Shannon's diversity increased in the heated surface sediments. The results also suggested a trend toward smaller-sized microorganisms within the heated bay bottom waters, with a 30% increased relative abundance of small size picocyanobacteria in the summer (June). Furthermore, bacterial communities in the heated bay surface sediment displayed little seasonal variability but did show potential changes of long-term increased average temperature in the interplay with related effects on bottom waters. Finally, heated bay metabolic gene predictions from the 16S rRNA gene sequences suggested raised anaerobic processes closer to the sediment-water interface. In conclusion, climate change will likely alter microbial seasonality and diversity, leading to prolonged and increased algae blooming and elevated respiration rates within coastal waters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226639PMC
http://dx.doi.org/10.3389/fmicb.2022.873281DOI Listing

Publication Analysis

Top Keywords

bacterial communities
16
climate change
16
heated bay
16
bottom water
12
baltic sea
8
coastal waters
8
change will
8
effects bottom
8
surface sediment
8
increased algae
8

Similar Publications

Gut Microbiome as Potential Therapeutics in Multiple Sclerosis.

Curr Treat Options Neurol

November 2021

Department of Neurology, Biomedical Science Tower 3, University of Pittsburgh, Suite 7014, 3501 5th Avenue, Pittsburgh, PA 15260, USA.

Purpose Of Review: The gut microbiome is an emerging arena to investigate multiple sclerosis (MS) pathogenesis and potential therapeutics. In this review, we summarize the available data and postulate the feasibilities of potential MS therapeutic approaches that modulate the gut microbiome.

Recent Findings: Growing evidence indicates dysbiosis in the gut bacterial ecosystem in MS.

View Article and Find Full Text PDF

Establishment and maturation of gut microbiota in White King pigeon squabs: role of pigeon milk.

Front Microbiol

January 2025

Yingshan Fucheng Meat Pigeon Breeding Professional Cooperative, Nanchong, China.

Background: Pigeons are significant economic animals in China; however, research regarding the establishment and influencing factors of gut microbiota in squabs remains limited. Understanding how the gut microbiota develops in pigeons, particularly in relation to pigeon milk, is importance in pigeon production. This study aims to elucidate the establishment characteristics of the gut microbiota in White King pigeon squabs and explore the role of pigeon milk in this process.

View Article and Find Full Text PDF

The expansion of the seafood market has led to an increased probability of food fraud. The development of rapid and reliable traceability methods for aquatic food products is of utmost importance. In this study, direct analysis and identification of the intestinal microbiota of aquatic foods were conducted.

View Article and Find Full Text PDF

Background: Acquiring representative bacterial 16S rRNA gene community profiles in plant microbiome studies can be challenging due to the excessive co-amplification of host chloroplast and mitochondrial rRNA gene sequences that reduce counts of plant-associated bacterial sequences. Peptide Nucleic Acid (PNA) clamps prevent this by blocking PCR primer binding or binding within the amplified region of non-target DNA to stop the function of DNA polymerase. Here, we applied a universal chloroplast (p)PNA clamp and a newly designed mitochondria (m)PNA clamp to minimise host chloroplast and mitochondria amplification in 16S rRNA gene amplicon profiles of leaf, bark and root tissue of two oak species (Quercus robur and Q.

View Article and Find Full Text PDF

Staphylococcaceae are a diverse bacterial family with important implications for human and animal health. This study highlights the One Health relevance of their environmental dispersal, particularly, by identifying closely related or genetically identical strains circulating between farm and community environments. Environmental Staphylococcaceae strains were isolated from animal farms and interconnected areas within a university setting, both influenced by anthropogenic activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!