Background: The impact of the gut and its microbiota are increasingly appreciated in health and disease. Short-chain fatty acids (SCFAs) are among the main metabolites synthesized from bacterial fermentation. Recently, we showed the anti-inflammatory and potentially neuroprotective effect of propionic acid (PA) in multiple sclerosis (MS). Osteoporosis is one of the most common co-morbidities for MS patients with limited therapeutic options available. Osteoporosis is closely linked to an imbalance of cells of the immune system and an immune-mediated impact on bone structure the gut has been shown. Interestingly, intake of SCFA leads to bone mass increase and concomitant reduction of inflammation-induced bone loss in mice.
Objective: To determine the impact of PA supplementation on markers of bone metabolism in MS patients.
Methods: We investigated the influence of 14 days supplementation with PA on bone metabolism in 20 MS patients. To this end, β-CrossLaps and osteocalcin, established markers of bone metabolism, were measured in serum before and after PA intake and correlated with phenotypic and functional immunodata.
Results: Supplementation with PA induced a significant increase in serum levels of osteocalcin, a surrogate marker for bone formation. Levels of β-CrossLaps, a marker for bone resorption, were significantly decreased after therapy. Regulatory T-cell (Treg) numbers and suppressive capacity positively correlated with serum levels of osteocalcin while Th17 cell numbers showed an inverse correlation. Our findings are in line with animal studies showing that SCFA induced increased bone formation and reduced bone resorption.
Conclusion: In addition to its immune regulatory, disease-modifying effect on MS disease course, supplementation with PA beneficially influences serum levels of β-CrossLaps and osteocalcin and may thus also protect against osteoporosis, a common co-morbidity in MS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9218497 | PMC |
http://dx.doi.org/10.1177/17562864221103935 | DOI Listing |
Mol Biol Rep
January 2025
Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands.
Brown adipose tissue (BAT) is a metabolically highly active tissue that dissipates energy stored within its intracellular triglyceride droplets as heat. Others have previously utilized MRI to show that the fat fraction of human supraclavicular BAT (scBAT) decreases upon cold exposure, compared with baseline (i.e.
View Article and Find Full Text PDFAm J Biol Anthropol
January 2025
Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.
Introduction: Contemporary dietary and nutritional transitions are commonplace, but difficult to study directly. In Brazil, and Latin America, this generalized process, leading to current obesity and malnutrition problems, started more than four decades ago. Although body weight and food availability are used to measure changes, not much information on food consumption and nutrition exist.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.
The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.
View Article and Find Full Text PDFJ Dent Res
January 2025
Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Cellular senescence has emerged as one of the central hallmarks of aging and drivers of chronic comorbidities, including periodontal diseases. Senescence can also occur in younger tissues and instigate metabolic alterations and dysfunction, culminating in accelerated aging and pathological consequences. Senotherapeutics, such as the combination of dasatinib and quercetin (DQ), are being increasingly used to improve the clinical outcomes of chronic disorders and promote a healthy life span through the reduction of senescent cell burden and senescence-associated secretory phenotype (SASP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!