Current Advances in CETSA.

Front Mol Biosci

Division of Rheumatology, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden.

Published: June 2022

Knowing that the drug candidate binds to its intended target is a vital part of drug discovery. Thus, several labeled and label-free methods have been developed to study target engagement. In recent years, the cellular thermal shift assay (CETSA) with its variations has been widely adapted to drug discovery workflows. Western blot-based CETSA is used primarily to validate the target binding of a molecule to its target protein whereas CETSA based on bead chemistry detection methods (CETSA HT) has been used to screen molecular libraries to find novel molecules binding to a pre-determined target. Mass spectrometry-based CETSA also known as thermal proteome profiling (TPP) has emerged as a powerful tool for target deconvolution and finding novel binding partners for old and novel molecules. With this technology, it is possible to probe thermal shifts among over 7,000 proteins from one sample and to identify the wanted target binding but also binding to unwanted off-targets known to cause adverse effects. In addition, this proteome-wide method can provide information on the biological process initiated by the ligand binding. The continued development of mass spectrometry labeling reagents, such as isobaric tandem mass tag technology (TMT) continues to increase the throughput of CETSA MS, allowing its use for structure-activity relationship (SAR) studies with a limited number of molecules. In this review, we discussed the differences between different label-free methods to study target engagement, but our focus was on CETSA and recent advances in the CETSA method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9218591PMC
http://dx.doi.org/10.3389/fmolb.2022.866764DOI Listing

Publication Analysis

Top Keywords

cetsa
9
advances cetsa
8
target
8
drug discovery
8
label-free methods
8
study target
8
target engagement
8
target binding
8
novel molecules
8
binding
6

Similar Publications

Astragaloside IV inhibits retinal pigment epithelial cell senescence and reduces IL-1β mRNA stability by targeting FTO-mediated mA methylation.

Phytomedicine

January 2025

School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China. Electronic address:

Background: Resistance to senescence in retinal pigment epithelial (RPE) cells can delay the progression of age-related macular degeneration (AMD). However, the mechanisms underlying RPE cell senescence remain inadequately understood, and effective therapeutic strategies are lacking. While astragaloside IV (Ast) has demonstrated anti-aging properties, its specific effects on RPE cell senescence and potential mechanisms are not yet fully clarified.

View Article and Find Full Text PDF

Background: Osteosarcoma is the most common malignant bone tumor in children and adolescents, characterized by high disability and mortality rates. Over the past three decades, therapeutic outcomes have plateaued, underscoring the critical need for innovative therapeutic targets. Solute carrier (SLC) family transporters have been implicated in the malignant progression of a variety of tumors, however, their specific role in osteosarcoma remains poorly understood.

View Article and Find Full Text PDF

A novel small molecule NJH-13 induces pyroptosis via the Ca driven AKT-FOXO1-GSDME signaling pathway in NSCLC by targeting TRPV5.

J Adv Res

January 2025

Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China. Electronic address:

Introduction: Pyroptosis represents a mode of programmed necrotic cell death (PCD), mediated by members of gasdermin family (GSDMs), such as GSDME. It is emerging as a promising approach for combating cancer. Notably, GSDME is the key modulator for the switch between apoptosis and pyroptosis in cells.

View Article and Find Full Text PDF

Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.

View Article and Find Full Text PDF

Dietary limonin alleviates Typhimurium-induced colitis dual targeting virulence SopB and SopE2 and inhibiting RAC1/CDC42/Arp2/3 pathway and regulating gut microbiota.

Food Funct

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.

serovar Typhimurium (STM) causes severe colitis, necessitating the development of effective drugs. Here, the dockings of limonin with the STM T3SS-1 virulence factor SopB or SopE2 showed strong binding activity and was verified by CETSA and DARTS assays . Limonin inhibited the enzyme activities and expression of SopB and SopE2 .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!