AI Article Synopsis

  • Plants face abiotic stresses like salt and drought due to climate change, and while they use similar mechanisms to cope with each, the combined effects are not well-understood.* -
  • An experiment tested different levels of salt and drought stress on native plants, revealing that while drought negatively impacted photosynthesis and ion uptake, salt stress helped mitigate these negative effects.* -
  • Overall, salt stress aids drought resistance by enhancing osmotic adjustment, allowing plants to manage water potential and maintain growth under combined stress conditions.*

Article Abstract

In context of the climate change, major abiotic stresses faced by plants include salt stress and drought stress. Though, plants have similar physiological mechanisms to cope with these salt and drought stresses. The physiological and biochemical response of native plants to the combined application of salinity and drought stresses are still not well-understood. Thus, to investigate the combined effect of salinity and drought stresses, an experiment was conducted on with four levels of salinity and four drought intensities under the arid climatic conditions. The experiment was conducted in a randomized complete block design with a split-plot arrangement replicated three times. had been found resistant to different levels of individual and combined salt and drought stresses. survived till the end of the experiment. Salt and water stress did not show any significant effects on shoot weight, shoot length, and root length. The drought stress affected the photosynthetic rate, ion uptake and leaf water potential. However, salt stress helped to counter this effect of drought stress. Thus, drought stress did not affect plant growth, photosynthesis rate, and ion uptake when combined with salt stress. Increased Na and Cl uptake under the salt stress helped in osmotic adjustment. Therefore, the leaf water potential (LWP) decreased with increasing the salt stress from 5 dSm until 15 dSm and increased again at 20 dSm. At lower salt stress, ABA and proline content declined with increasing the drought stress. However, at higher salt stress, ABA content increased with increasing the drought stress. In conclusion, the salt stress had been found to have a protective role to drought stress for . utilized inorganic ion for osmotic adjustment at lower salinity stress but also accumulate the organic solutes to balance the osmotic pressure of the ions in the vacuole under combined stress conditions. Due to the physical lush green appearance and less maintenance requirements, can be recommended as a native substitute in landscaping under the salt and drought stresses conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213750PMC
http://dx.doi.org/10.3389/fpls.2022.900210DOI Listing

Publication Analysis

Top Keywords

salt stress
32
drought stress
28
drought stresses
20
stress
18
salinity drought
16
drought
14
salt
12
salt drought
12
stress drought
8
experiment conducted
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!