The cold acclimation process is regulated by many factors like ambient temperature, day length, light intensity, or hormonal status. Experiments with plants grown under different light quality conditions indicate that the plant response to cold is also a light-quality-dependent process. Here, the role of light quality in the cold response was studied in 1-month-old (Col-0) plants exposed for 1 week to 4°C at short-day conditions under white (100 and 20 μmol ms), blue, or red (20 μmol ms) light conditions. An upregulated expression of , inhibition of photosynthesis, and an increase in membrane damage showed that blue light enhanced the effect of low temperature. Interestingly, cold-treated plants under blue and red light showed only limited freezing tolerance compared to white light cold-treated plants. Next, the specificity of the light quality signal in cold response was evaluated in accessions originating from different and contrasting latitudes. In all but one accession, blue light increased the effect of cold on photosynthetic parameters and electrolyte leakage. This effect was not found for Ws-0, which lacks functional CRY2 protein, indicating its role in the cold response. Proteomics data confirmed significant differences between red and blue light-treated plants at low temperatures and showed that the cold response is highly accession-specific. In general, blue light increased mainly the cold-stress-related proteins and red light-induced higher expression of chloroplast-related proteins, which correlated with higher photosynthetic parameters in red light cold-treated plants. Altogether, our data suggest that light modulates two distinct mechanisms during the cold treatment - red light-driven cell function maintaining program and blue light-activated specific cold response. The importance of mutual complementarity of these mechanisms was demonstrated by significantly higher freezing tolerance of cold-treated plants under white light.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221075 | PMC |
http://dx.doi.org/10.3389/fpls.2022.887103 | DOI Listing |
Vaccines (Basel)
January 2025
Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
Background/objectives: COVID-19 vaccines effectively prevent severe disease, but unequal distribution, especially in low- and middle-income countries, has led to vaccine-resistant strains. This highlights the urgent need for alternative vaccine platforms that are safe, thermostable, and easy to distribute. This study evaluates the immunogenicity, stability, and scalability of a dissolved microneedle array patch (MAP) delivering the rS1RS09 subunit vaccine, comprising the SARS-CoV-2 S1 monomer and RS09, a TLR-4 agonist peptide.
View Article and Find Full Text PDFVaccines (Basel)
January 2025
Smorodintsev Research Institute of Influenza, The Ministry of Health of the Russian Federation, Saint-Petersburg 197022, Russia.
Background: Influenza viruses with truncated NS1 proteins show promise as viral vectors and candidates for mucosal universal influenza vaccines. These mutant NS1 viruses, which lack the N-terminal half of the NS1 protein (124 a.a.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
Drug Safety Research and Development, Pfizer Research & Development, Pearl River, NY 10965, USA.
: Respiratory syncytial virus (RSV) infections usually cause mild, cold-like symptoms in most people, but are a leading infectious disease causing infant death and hospitalization and can result in increased morbidity and mortality in older adults and at-risk individuals. Pfizer has developed Abrysvo, an unadjuvanted bivalent recombinant protein subunit vaccine containing prefusion-stabilized fusion (F) proteins representing RSV A and RSV B subgroups (RSVpreF). It is the only RSV vaccine approved for both maternal immunization to protect infants and active immunization of older adults (≥60 years) and 18-59-year-old individuals with high-risk conditions for prevention of RSV disease.
View Article and Find Full Text PDFMar Drugs
December 2024
NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China.
The deep-sea ecosystem, a less-contaminated reservoir of antibiotic resistance genes (ARGs), has evolved antibiotic resistance for microbes to survive and utilize scarce resources. Research on the diversity and distribution of these genes in deep-sea environments is limited. Our metagenomics study employed short-read-based (SRB) and assembled-contig-based (ACB) methods to identify ARGs in deep-sea waters and sediments and assess their potential pathogenicity.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
Spermatogenesis is an advanced biological process, relying on intricate interactions between somatic and germ cells in testes. Investigating various cell types is challenging because of cellular heterogeneity. Single-cell RNA sequencing (scRNA-seq) offers a method to analyze cellular heterogeneity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!