In the present study, a series of K-modified CoMoS catalysts with compositions of 10% K, 3.6% Co, and 12 wt % Mo supported over novel commercial activated carbons such as powder materials (DAC and OBC-1) and fiber materials (fabric active sorption (TCA) and nonwoven activated material (AHM)) were prepared and characterized by Brunauer-Emmett-Teller (BET), X-ray fluorescence (XRF), scanning electron microscopy (SEM), SEM-energy dispersive X-ray (EDX), and transmission electron microscopy (TEM). The catalytic activities for higher alcohol synthesis from syngas, conducted at = 300-360 °C, = 5 MPa, GHSV = 760 L h (kg cat), and H/CO = 1.0, were investigated. Cat-TCA and Cat-AHM have shown a filamentous morphology with a strip axial arrangement and that a few longitudinal grooves and many irregular particles are distributed on the fiber surfaces. The degree of entanglement of the strip axial arrangement in AHM was found to be more than that in TCA, thus leading to form tangled MoS slabs on AHM and long linear slabs on TCA with long rim sites. The obtained results revealed that the CO conversion increases in the order Cat-TCA < Cat-OBC-1 < Cat-DAC < Cat-AHM. Ethanol, propanol-1, and methanol are the most predominant alcohol products in the collected liquid products, with the byproducts containing mainly butanol-1, isobutanol, amyl alcohol, and isoamyl alcohol. Cat-DAC and Cat-OBC-1 show higher selectivity toward C, C, propanol-1, butanol-1, isobutanol, and amyl alcohol-1 than Cat-TCA and Cat-AHM. For powdered activated carbons, microporous catalysts inhibited isomerization because the catalyst that contains the highest micropores (Cat-DAC) produced a considerable amount of linear alcohols compared with Cat-OBC-1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219528 | PMC |
http://dx.doi.org/10.1021/acsomega.2c03082 | DOI Listing |
Pharmaceutics
December 2024
Department of Hospital Surgery, Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technology, Pirogov Russian National Research Medical University (RNRMU), 117997 Moscow, Russia.
Background/objectives: The aim was to study the possibilities of biomedical application of gadolinium oxide nanoparticles (GdO NPs) synthesized under industrial conditions, and evaluate their physicochemical properties, redox activity, biological activity, and safety using different human cell lines.
Methods: The powder of GdO NPs was obtained by a process of thermal decomposition of gadolinium carbonate precipitated from nitrate solution, and was studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, mass spectrometry, and scanning electron microscopy (SEM) with energy dispersive X-ray analyzer (EDX). The redox activity of different concentrations of GdO NPs was studied by the optical spectroscopy (OS) method in the photochemical degradation process of methylene blue dye upon irradiation with an optical source.
Pharmaceutics
December 2024
Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Skłodowskiej St., 41-819 Zabrze, Poland.
: Cancer remains one of the leading causes of death worldwide, and thus, there is a need for the development of innovative and more effective treatment strategies. The aim of the study was to evaluate two types of nanoparticles-nanospheres and micelles-obtained from PLA-based polymers to discover their potential for delivering four types of phenothiazine derivatives. : The morphology, drug-loading properties, cytocompatibility, hemolytic properties and anticancer activity were analyzed.
View Article and Find Full Text PDFPharmaceutics
December 2024
Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia.
Pathogen bacteria appear and survive on various surfaces made of steel or glass. The existence of these bacteria in different forms causes significant problems in healthcare facilities and society. Therefore, the surface engineering of highly potent antimicrobial coatings is highly important in the 21st century, a period that began with a series of epidemics.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
Antioxidants are contained in fruits and vegetables and are commonly obtained through food. However, it is frequently necessary to supplement the diet with substances that are often poorly soluble in water and sensitive to light and oxygen. For this reason, in this work, luteolin (LUT) and naringenin (NAR), two compounds with antioxidant activity and potential health benefits, were precipitated through the supercritical antisolvent technique using polyvinylpyrrolidone and β-cyclodextrin as the carriers.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Engineering, Pegaso Telematic University, 80143 Naples, Italy.
Lactic acid (LA) is a versatile, optically active compound with applications across the food, cosmetics, pharmaceutical, and chemical industries, largely driven by its role in producing biodegradable polylactic acid (PLA). Due to its abundance, lignocellulosic biomass is a promising and sustainable resource for LA production, although media derived from these matrices are often rich in xylose and contain growth inhibitors. This study investigates LA production using a xylose-rich medium derived from DC stalks treated through steam explosion and enzymatic hydrolysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!