The von Willebrand factor (VWF), by interacting with the circulatory system and platelets, harnesses hemodynamic forces to form hemostatic plugs or occlusive thrombi. The autoinhibitory modules (AIMs) flanking the VWF-A1 domain were found to contribute to its biomechanical activation. However, how AIM sequences regulate the VWF-A1 binding behavior is controversial and incompletely understood as their structures are currently unsolvable by crystallography. To address this, we first performed molecular dynamics simulations to predict the N-terminal AIM (N-AIM; residues Q1238-E1260) structure. Excitingly, we found that N-AIM could cooperate with C-AIM to form a joint Rotini-like structure, thereby partially autoinhibiting the VWF-A1-GPIbα interaction. Furthermore, we used biomembrane force probe (BFP) assays to experimentally demonstrate that the VWF-A1 containing long N-AIM sequence (1238-A1) exhibited catch-bond behavior as the force first decelerated (catch) and then accelerated (slip) the dissociation. Conversely, VWF-A1 with short N-AIM (1261-A1) displayed bi-variable behaviors with either catch (1261-A1) or slip bonds (1261-A1). Notably, such bi-variable transition happened at low temperatures or high pH levels, whereas Q1238-E1260 stabilized the 1238-A1 catch bond regardless of the environmental factors. The physiological study was complemented by platelet perfusion assays using microfluidics. Taken together, these studies provide new mechanobiology on how N-AIM serves as a mechano-regulator of VWF activity, which inspires future VWF-A1 dependent antithrombotic approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9175105 | PMC |
http://dx.doi.org/10.1039/d2cb00010e | DOI Listing |
Virchows Arch
December 2021
Department of Plastic Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
Merkel cell carcinoma (MCC) is a rare and aggressive neuroendocrine malignancy of the skin. The cell of origin of MCC is thus far unknown and proposed cells of origin include Merkel cells, pro-/pre- or pre-B cells, epithelial stem cells, and dermal stem cells. In this study, we aimed to shed further light on the possibility that a subset of MCC tumors arise from epithelial stem cells of the skin by examining the expression of hair follicle and epidermal stem cell markers in MCC and normal human skin.
View Article and Find Full Text PDFAm J Med Genet A
June 2021
The Folkhaelsan Department of Medical Genetics, The Folkhaelsan Institute of Genetics and the Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland.
J Transl Med
October 2020
Institute of Neurophysiology, Medical Faculty Mannheim, University Heidelberg, Heidelberg, Germany.
J Eur Acad Dermatol Venereol
February 2019
Department of Dermatology, Allergology and Venereology, Helsinki University Central Hospital, Helsinki, Finland.
Transplantation
January 2016
1 Transplantation Laboratory, University of Helsinki, Helsinki, Finland. 2 Department of surgery, Oulu University Central Hospital, Oulu, Finland. 3 Transplantation and Liver Surgery Unit, Helsinki University Central Hospital, Helsinki, Finland. 4 Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!