Bromodomain-containing proteins 7 and 9 (BRD7 and BRD9) have been considered as potential targets of clinical drug design toward treatment of human cancers and other diseases. Multiple short molecular dynamics simulations and binding free energy predictions were carried out to decipher the binding selectivity of three inhibitors 4L2, 5U6, and 6KT toward BRD7 and BRD9. The results show that 4L2 has more favorable binding ability to BRD7 over BRD9 compared to 5U6 and 6KT, while 5U6 and 6KT possess more favorable associations with BRD9 than BRD7. Furthermore, estimations of residue-based free energy decompositions further identify that four common residue pairs, including (F155, F44), (V160, V49), (Y168, Y57) and (Y217, Y106) in (BRD7, BRD9) generate obvious binding differences with 4L2, 5U6, and 6KT, which mostly drives the binding selectivity of 4L2, 5U6, and 6KT to BRD7 and BRD9. Dynamic information arising from trajectory analysis also suggests that inhibitor bindings affect structural flexibility and motion modes, which is responsible for the partial selectivity of 4L2, 5U6, and 6KT toward BRD7 and BRD9. As per our expectation, this study theoretically provides useful hints for design of dual inhibitors with high selectivity on BRD7 and BRD9.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169554 | PMC |
http://dx.doi.org/10.1039/d2ra02637f | DOI Listing |
Eur J Med Chem
October 2023
Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China. Electronic address:
BRD9 is essential in regulating gene transcription and chromatin remodeling, and blocking BRD9 profoundly affects the survival of AML cells. However, the inhibitors of BRD9 suffer from various drawbacks, including poor phenotype and selectivity, and BRD9 PROTACs still face the challenge of druggability, which limits the development of blocking BRD9 in AML. This study described an oral activity BRD9 PROTAC C6 by recruiting the highly efficient E3 ligase.
View Article and Find Full Text PDFJ Med Chem
August 2024
Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States.
J Med Chem
August 2023
Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University. Robert Heine Pharmacy Building 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.
Bromodomain-containing proteins are readers of acetylated lysine and play important roles in cancer. Bromodomain-containing protein 7 (BRD7) is implicated in multiple malignancies; however, there are no selective chemical probes to study its function in disease. Using crystal structures of BRD7 and BRD9 bromodomains (BDs) bound to BRD9-selective ligands, we identified a binding pocket exclusive to BRD7.
View Article and Find Full Text PDFInt J Biol Macromol
March 2023
Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan. Electronic address:
The bromodomain-containing protein 9, a component of the SWI/SNF chromatin remodeling complex, functions as an 'epigenetic reader' selectively recognizing acetyl-lysine marks. It regulates chromatin structure and gene expression by recruitment of acetylated transcriptional regulators and by modulating the function of remodeling complexes. Recent data suggests that BRD9 plays an important role in regulating cellular growth and it has been suggested to drive progression of several malignant diseases such as cervical cancer, and acute myeloid leukemia.
View Article and Find Full Text PDFJ Proteome Res
January 2023
Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Quebec, Canada; CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada.
Bromodomains (BRDs) are a family of evolutionarily conserved domains that are the main readers of acetylated lysine (Kac) residues on proteins. Recently, numerous BRD-containing proteins have been proven essential for transcriptional regulation in numerous contexts. This is exemplified by the multi-subunit mSWI/SNF chromatin remodeling complexes, which incorporate up to 10 BRDs within five distinct subunits, allowing for extensive integration of Kac signaling to inform transcriptional regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!