The morphology of collagen-producing cells and the structure of produced collagen in the dermis have not been well-described. This lack of insights has been a serious obstacle in the evaluation of skin regeneration. We succeeded in visualizing collagen-producing cells and produced collagen using the axolotl skin, which is highly transparent. The visualized dermal collagen had a lattice-like structure. The collagen-producing fibroblasts consistently possessed the lattice-patterned filopodia along with the lattice-patterned collagen network. The dynamics of this lattice-like structure were also verified in the skin regeneration process of axolotls, and it was found that the correct lattice-like structure was not reorganized after simple skin wounding but was reorganized in the presence of nerves. These findings are not only fundamental insights in dermatology but also valuable insights into the mechanism of skin regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213773PMC
http://dx.doi.org/10.1016/j.isci.2022.104524DOI Listing

Publication Analysis

Top Keywords

skin regeneration
16
lattice-like structure
12
lattice-patterned collagen
8
axolotl skin
8
collagen-producing cells
8
produced collagen
8
skin
6
collagen fibers
4
fibers dynamics
4
dynamics axolotl
4

Similar Publications

Exosomes, cell-derived vesicles produced by cells, are fascinating and drawing growing interest in the field of biomedical exploration due to their exceptional properties. There is fascinating evidence that exosomes are involved in major biological processes, including diseases and regeneration. Exosomes from mesenchymal stem cells (MSCs) have shown promising outcomes in regenerative medicine.

View Article and Find Full Text PDF

Burn wounds are challenging to treat due to considerable tissue damage and fluid loss. Creating wound dressings from natural and biological materials makes it possible to treat wounds and promote rapid epithelialization to speed healing and restore skin function. As a result, the ability of a collagen scaffold (Col) made from rainbow trout (Oncorhynchus mykiss) and putative bioactive phytochemical components from a Sargassum glaucescens (S.

View Article and Find Full Text PDF

Magnetic Nanoactuator-Protein Fiber Coated Hydrogel Dressing for Well-Balanced Skin Wound Healing and Tissue Regeneration.

ACS Nano

January 2025

State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China.

Despite significant progress in skin wound healing, it is still a challenge to construct multifunctional bioactive dressings based on a highly aligned protein fiber coated hydrogel matrix for antifibrosis skin wound regeneration that is indistinguishable to native skin. In this study, a "dual-wheel-driven" strategy is adopted to modify the surface of methacrylated gelatin (GelMA) hydrogel with highly aligned magnetic nanocomposites-protein fiber assemblies (MPF) consisting of photothermal responsive antibacteria superparamagnetic nanocomposites-fibrinogen (Fg) complexes as the building blocks. Whole-phase healing properties of the modified hydrogel dressing, GelMA-MPF (GMPF), stem from the integration of Fg protein with RGD peptide activity decorated on the surface of the antibacterial magnetic nanoactuator, facilitating facile and reproducible dressing preparation by self-assembly and involving biochemical, morphological, and biophysical cues.

View Article and Find Full Text PDF

Filsuvez (birch triterpenes) topical gel received approval in 2023 for the treatment of epidermolysis bullosa (EB) in pediatric patients (aged ≥6 months) and adults. It promotes wound healing by modulating inflammation, encouraging new tissue formation, and maintaining the skin barrier. In a randomized, double-blind, controlled, parallel-group, phase III trial (EASE, NCT03068780), 223 patients were randomly assigned to two groups: the first group received treatment with birch triterpenes topical gel (study gel, n = 109), and the second group received treatment with vehicle gel (n = 114).

View Article and Find Full Text PDF

Background: The increased incidence of androgenic alopecia (AGA) causes adverse physiological and psychological effects on people of all genders. The hair follicle stem cells (HFSCs) have displayed clinical improvements on AGA. However, the molecular mechanism of HFSCs against AGA remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!