Propolis is a resinous product collected by bees from plant exudates to protect and maintain hive homeostasis. Propolis has been used therapeutically for centuries as folk medicine. Modern research investigating the diversity of the chemical composition and plant sources, biological activity, extraction processes, analytical methods, and therapeutic properties in clinical settings have been carried out extensively since the 1980s. Due to its antimicrobial, anti-inflammatory, and immuno-modulator properties, propolis appears to be a suitable bioactive component to be incorporated into biomaterials. This review article attempts to analyze the potential application of propolis as a biomaterial component from the available experimental evidence. The efficacy and compabitility of propolis depend upon factors, such as types of extracts and types of biomaterials. Generally, propolis appears to be compatible with hydroxyapatite/calcium phosphate-based biomaterials. Propolis enhances the antimicrobial properties of the resulting composite materials while improving the physicochemical properties. Furthermore, propolis is also compatible with wound/skin dressing biomaterials. Propolis improves the wound healing properties of the biomaterials with no negative effects on the physicochemical properties of the composite biomaterials. However, the effect of propolis on the glass-based biomaterials cannot be generalized. Depending on the concentration, types of extract, and geographical sources of the propolis, the effect on the glass biomaterials can either be an improvement or detrimental in terms of mechanical properties such as compressive strength and shear bond strength. In conclusion, two of the more consistent impacts of propolis across these different types of biomaterials are the enhancement of the antimicrobial and the immune-modulator/anti-inflammatory properties resulting from the combination of propolis and the biomaterials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9213800 | PMC |
http://dx.doi.org/10.3389/fphar.2022.930515 | DOI Listing |
PeerJ
December 2024
Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA, United States.
Background: Propolis is a natural substance produced by honeybees that has various biological properties including, anti-inflammatory, antioxidant and antimicrobial properties. Although previous studies have evaluated the antimicrobial effects of propolis in dentistry, its effects on dental pulp stem cell (DPSC) viability, migration, and differentiation are yet not well understood. The objective of this study was to investigate the effects of Chinese propolis on viability/proliferation, migration, differentiation and cytokine expression in DPSCs.
View Article and Find Full Text PDFJ Funct Biomater
November 2024
Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
Dental implants are widely recognized for their effectiveness in restoring missing teeth, yet their success is often compromised by infections or inadequate osseointegration. Propolis, a natural resinous substance with potent antimicrobial, anti-inflammatory, and osteogenic properties, has emerged as a promising adjunct in dental implantology. This systematic review critically evaluates the current evidence on the incorporation of propolis into dental implants, focusing on its impact on antimicrobial efficacy, bone healing, and overall implant stability.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Hitit University, Faculty of Engineering, Polymer Materials Engineering Department, 19030 Corum, Turkey. Electronic address:
The ultimate goal of this study was to establish the groundwork for the development of high-mechanical pullulan based films for wound healing applications. For this purpose, pullulan (PUL) was successfully methacrylated with different methacrylic anhydride amounts and used for the fabrication of photocurable wound dressing films (PULMA). The mechanical properties of the films, evaluated by changing the methacrylation degree and polymer concentration for better mechanical performance, indicated the best results in terms of elastic modulus (2.
View Article and Find Full Text PDFPharmaceuticals (Basel)
October 2024
Institute of Health Sciences, Federal University of Pará, Belem 66075-110, Brazil.
Background: Skin injury affects the integrity of the skin structure and induces the wound healing process, which is defined by a well-coordinated series of cellular and molecular reactions that aim to recover or replace the injured tissue. Hydrogels are a group of promising biomaterials that are able to incorporate active ingredients for use as dressings. This study aimed to synthesize hydrogels with and without propolis extract and evaluate their physical characteristics and biological activities in vitro for potential use as active dressings in the treatment of skin lesions.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Biosensor Research Center (BRC), Isfahan University of Medical Sciences (IUMS), Isfahan, Iran. Electronic address:
Skin injuries resulting from physical trauma pose significant health risks, necessitating advanced wound care solutions. This investigation introduces an innovative bilayer wound dressing composed of 3D-printed propolis-coated polycaprolactone (PCL/PP) and an electrospun composite of polyvinyl alcohol, chitosan, polycaprolactone, and diltiazem (PVA/CTS/PCL/DTZ). SEM analysis revealed a bilayer structure with 89.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!