Although the protective effects of naringenin (Nar) on vascular smooth muscle cells (VSMCs) have been confirmed, whether it has anti-proliferation and anti-migration effects in high-glucose-induced VSMCs has remained unclear. This study aimed to clarify the potential targets and molecular mechanism of Nar when used to treat high-glucose-induced vasculopathy based on transcriptomics, network pharmacology, molecular docking, and and assays. We found that Nar has visible anti-proliferation and anti-migration effects both (high-glucose-induced VSMC proliferation and migration model) and (type 1 diabetes mouse model). Based on the results of network pharmacology and molecular docking, vascular endothelial growth factor A (VEGFA), the proto-oncogene tyrosine-protein kinase Src (Src) and the kinase insert domain receptor (KDR) are the core targets of Nar when used to treat diabetic angiopathies, according to the degree value and the docking score of the three core genes. Interestingly, not only the Biological Process (BP), Molecular Function (MF), and KEGG enrichment results from network pharmacology analysis but also transcriptomics showed that phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) is the most likely downstream pathway involved in the protective effects of Nar on VSMCs. Notably, according to the differentially expressed genes (DEGs) in the transcriptomic analysis, we found that cAMP-responsive element binding protein 5 (CREB5) is a downstream protein of the PI3K/Akt pathway that participates in VSMCs proliferation and migration. Furthermore, the results of molecular experiments were consistent with the bioinformatic analysis. Nar significantly inhibited the protein expression of the core targets (VEGFA, Src and KDR) and downregulated the PI3K/Akt/CREB5 pathway. Our results indicated that Nar exerted anti-proliferation and anti-migration effects on high-glucose-induced VSMCs through decreasing expression of the target protein VEGFA, and then downregulating the PI3K/Akt/CREB5 pathway, suggesting its potential for treating diabetic angiopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219407PMC
http://dx.doi.org/10.3389/fphar.2022.862709DOI Listing

Publication Analysis

Top Keywords

network pharmacology
16
proliferation migration
12
anti-proliferation anti-migration
12
anti-migration effects
12
effects high-glucose-induced
12
molecular mechanism
8
vascular smooth
8
smooth muscle
8
muscle cells
8
based network
8

Similar Publications

Resolving the molecular basis of a Mendelian condition remains challenging owing to the diverse mechanisms by which genetic variants cause disease. To address this, we developed a synchronized long-read genome, methylome, epigenome and transcriptome sequencing approach, which enables accurate single-nucleotide, insertion-deletion and structural variant calling and diploid de novo genome assembly. This permits the simultaneous elucidation of haplotype-resolved CpG methylation, chromatin accessibility and full-length transcript information in a single long-read sequencing run.

View Article and Find Full Text PDF

Blood clots (BCs) play a crucial biomechanical role in promoting osteogenesis and regulating mesenchymal stem cell (MSC) function and fate. This study shows that BC formation enhances MSC osteogenesis by activating Itgb1/Fak-mediated focal adhesion and subsequent Runx2-mediated bone regeneration. Notably, BC viscoelasticity regulates this effect by modulating Runx2 nuclear translocation.

View Article and Find Full Text PDF

Background: The 2006 National Institute of Allergy and Infectious Disease/Food Allergy and Anaphylaxis Network (NIAID/FAAN) anaphylaxis criteria are widely used in clinical care and research. In 2020, the World Allergy Organization (WAO) published modified criteria that have not been uniformly adopted. Different criteria contribute to inconsistent care and research outcomes.

View Article and Find Full Text PDF

Liver damage is one of the most severe side effects of valproic acid (VPA) therapy. Research indicates that PPAR-α prevents Wnt3a/β-catenin-induced PGC-1α dysregulation, which is linked to liver injury. Although PPAR-α activation has hepatoprotective effects, its role in preventing VPA-induced liver injury remains unclear.

View Article and Find Full Text PDF

The Mechanism of Bovis Culus Sativus Protecting BBB Damage in Stroke: Insights from Network Pharmacology, Bioinformatics, and Experiments.

J Ethnopharmacol

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137 , P.R. China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China. Electronic address:

Ethnopharmacological Relevance: Bovis calculus (BC) has a medicinal history of over 2,000 years in treating stroke in China. Bovis Culus Sativus (BCS) has similar pharmacological effects to BC. Due to the scarcity of BC, BCS is often used as a substitute for BC in clinical practice for treating stroke in traditional Chinese medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!