AI Article Synopsis

  • The study focuses on creating a cartilage hydrogel using type II collagen, chondroitin sulfate, and hyaluronic acid to address cartilage defects.
  • The hydrogel exhibited good compressive strength and successful chemical bonding, confirmed by Fourier transform infrared analysis.
  • Co-culturing umbilical cord stem cells with the hydrogel indicated that it supports cell activity and morphology, highlighting its potential for cartilage tissue engineering applications.

Article Abstract

Background: Cartilage tissue engineering is a promising way to repair cartilage defects. Different materials have been applied in the preparation of cartilage hydrogels, but all with various disadvantages.

Objective: The aim of this study was to prepare cartilage hydrogel using type II collagen, chondroitin sulfate and hyaluronic acid, to explore their gelation effect and compressive strength, and to analyze the feasibility of their application in cartilage tissue engineering.

Methods: Type II collagen (Col II), hyaluronic acid (HA) and chondroitin sulfate (CS) were mixed in a certain proportion to prepare gel scaffolds; changes in chemical groups were detected by Fourier transform infrared. After the hydrogel was prepared, its compressive strength was measured. Umbilical cord stem cells were co-cultured with hydrogel scaffolds to observe its cytocompatibility and analyze whether stem cells had cellular activity during co-culture; histological staining was applied to observe the hydrogel loaded with stem cells.

Results: Cartilage hydrogels were successfully prepared with good compressive strength, and Fourier transform infrared analysis showed that Schiff base reaction occurred during the preparation process and tight chemical cross-linking was formed. The results of umbilical cord stem cell co-culture showed that the hydrogel had good cytocompatibility and the stem cells had good activity in the hydrogel.

Conclusions: Cartilage hydrogels with stable structures were successfully prepared and had good compressive strength. Hydrogel scaffold could provide a suitable living environment for umbilical cord stem cells, so that they maintain normal cell morphology and activity, and has a good application potential in cartilage tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.3233/BME-221404DOI Listing

Publication Analysis

Top Keywords

cartilage tissue
16
compressive strength
16
stem cells
16
type collagen
12
chondroitin sulfate
12
hyaluronic acid
12
tissue engineering
12
cartilage hydrogels
12
umbilical cord
12
cord stem
12

Similar Publications

Purpose Of Review: Knee osteoarthritis (OA) is a gradual deterioration of articular cartilage characterized by pain and physical dysfunction. Although analgesic pharmacological agents are the first-line treatment for knee OA, they are not effective for all patients. In this study, we evaluate the efficacy of an intra-articular injection treatment using platelet-rich plasma (PRP) in reducing pain and improving functional ability.

View Article and Find Full Text PDF

A miR-activated hydrogel for the delivery of a pro-chondrogenic microRNA-221 inhibitor as a minimally invasive therapeutic approach for articular cartilage repair.

Mater Today Bio

February 2025

Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI, Dublin, Ireland.

Articular cartilage has limited capacity for repair (or for regeneration) under pathological conditions, given its non-vascularized connective tissue structure and low cellular density. Our group has successfully developed an injectable hydrogel for cartilage repair, composed of collagen type I (Col I), collagen type II (Col II), and methacrylated-hyaluronic acid (MeHA), capable of supporting chondrogenic differentiation of mesenchymal stem cells (MSCs) towards articular cartilage-like phenotypes. Recent studies have demonstrated that silencing may be an effective approach in promoting improved MSC chondrogenesis.

View Article and Find Full Text PDF

Joint degeneration characterized by cartilage deterioration and bone wear is the hallmark of osteoarthritis (OA), a condition that worsens over time. Total knee arthroplasty (TKA) is the most common effective treatment for OA. Conventional therapy training (CTT) is the standard intervention; we are testing whether intensive therapy training (ITT) provides different results when used preoperatively.

View Article and Find Full Text PDF

Medial meniscus root tears (MMRTs) are serious injuries that disrupt knee biomechanics, often accelerating cartilage degeneration and osteoarthritis when left untreated. These injuries are increasingly recognized as a major cause of knee pain and functional limitations, particularly among middle-aged and older adults. This systematic review and meta-analysis aimed to evaluate the outcomes of conservative management compared to surgical intervention for MMRT, focusing on pain relief, functional recovery, and the progression of osteoarthritis.

View Article and Find Full Text PDF

Ectopic Thymic Tissue Presenting as an Epiglottic Mass Compromising a Neonatal Airway: A Case Report.

Cureus

December 2024

Division of Otolaryngology, Department of Surgery, Nemours Children's Health System, Wilmington, USA.

An epiglottic mass (EM) is rarely found in neonates and poses life-threatening airway complications. We present the case of an infant urgently transferred from Belize via the World Pediatric Project with a lingual EM. The EM was misdiagnosed twice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!